Skip to main content
Log in

Canonical and Boundary Representations on the Lobachevsky Plane

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

Canonical representations on Hermitian symmetric spaces G/K were introduced by Vershik, Gelfand and Graev and Berezin. They are unitary. We study canonical representations in a wider sense. In this paper we restrict ourselves to a crucial example – the Lobachevsky plane: G=SU(1,1), K=U(1). Canonical representations are labelled by the complex parameter λ (Vershik–Gelfand–Graev's representations correspond to −3/2<λ<0). We decompose the canonical representations into irreducible components. The decomposition includes boundary representations generated by the canonical representations. So we study these boundary representations themselves. The decomposition of boundary representations is closely connected with the meromorphic structure of Poisson and Fourier transforms associated with canonical representations. In particular, second-order poles give second-order Jordan blocks. Finally, we give a full decomposition of the Berezin transform using ‘generalized powers’ (Pochhammer symbols) instead of usual powers of λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arazy, J. and Ørsted, B.: Asymptotic expansion of Berezin transforms, Indiana Univ. Math. J. 49(1) (2000), 7-30.

    Google Scholar 

  2. Berezin, F. A.: Quantization in complex symmetric spaces, Izv. Akad. Nauk SSSR, Ser. Mat. 39(2) (1975), 363-402. Engl. transl.: Math. USSR Izv. 9 (1975), 341-379.

    Google Scholar 

  3. Berezin, F. A.: Connection between co-and contravariant symbols of operators on the classical complex symmetric spaces, Dokl. Akad. Nauk SSSR 241(1) (1978), 15-17. Engl. transl.: Soviet Math. Dokl. 19(4) (1978), 341-379.

    Google Scholar 

  4. Dijk, G. van and Molchanov, V. F.: Tensor products of maximal degenerate series representations of the group SL(n,), J. Math. Pures Appl. 77(8) (1999), 747-799.

    Google Scholar 

  5. Erdelyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F.: Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.

    Google Scholar 

  6. Gradstein, I. S. and Ryzhik, I. M.: Table of Integrals, Series, and Products, Academic Press, New York, 1966.

    Google Scholar 

  7. Grosheva, L. I.: Representations on distributions on the Lobachevsky plane concentrated at the boundary, In: Proc. Tambov Summer School-Seminar Harmonic Analysis on Homogeneous Spaces, Tambov, Aug. 26-31, 1996, Vestnik Tambov Univ. 3(1) (1998), 46-49.

    Google Scholar 

  8. Molchanov, V. F.: Harmonic analysis on homogeneous spaces, In: Itogi Nauki i Tekhn. Sov. Probl. Mat. Fund. Napr. 59, VINITI, 1990, pp. 5-144. Engl. transl.: Encycl. Math. Sci. 59, Springer-Verlag, Berlin, 1995, pp. 1-135.

    Google Scholar 

  9. Molchanov, V. F.: Quantization on para-Hermitian symmetric spaces, In: Advances in Mathematical Sciences, Amer.Math. Soc. Transl. Ser. (2) 175, Amer. Math. Soc., Providence, 1996, pp. 81-95.

    Google Scholar 

  10. Molchanov, V. F. and Volotova, N. B.: Finite dimensional analysis and polynomial quantization on a hyperboloid of one sheet, In: Proc. Tambov Summer School-Seminar Harmonic Analysis on Homogeneous Spaces, Tambov, Aug. 26-31, 1996, Vestnik Tambov Univ. 3(1) (1998), 65-78.

    Google Scholar 

  11. Molchanov, V. F. and van Dijk, G.: Berezin forms on line bundles over complex hyperbolic spaces, Report No. MI 2001-02, Math. Inst. Univ. Leiden, 2001 (to appear in Integral Equations and Operator Theory).

  12. Neretin, Yu. A.: Boundary values of holomorphic functions and spectra of some unitary representations, In: Proc. Tambov Summer School-Seminar Harmonic Analysis on Homogeneous Spaces, Tambov, Aug. 26-31, 1996, Vestnik Tambov Univ. 2(4) (1997), 386-397.

    Google Scholar 

  13. Neretin, Yu. A.: Matrix analogs of the B-function and Plancherel formula for Berezin kernel representations, Mat. Sb. 191 (2000), 67-100.

    Google Scholar 

  14. Neretin, Yu. A.: Matrix balls, radial analysis of Berezin kernels, and hypergeometric determinants, See http://xxx.lanl.gov/math. RT/0012200 (2001).

  15. Unterberger, A. and Upmeier, H.: Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563-598.

    Google Scholar 

  16. Vershik, A. M., Gelfand, I. M. and Graev, M. I.: Representations of the group SL(2, R) where R is a ring of functions, Uspekhi Mat. Nauk 28(5) (1973), 83-128. Engl. transl.: London Math. Soc. Lect. Note Ser. 69, Cambridge Univ. Press, 1982, pp. 15-110.

    Google Scholar 

  17. Vilenkin, N. Ya.: Special Functions and the Theory of Group Representations, Nauka, Moscow, 1965. Engl. transl.: Transl. Math. Monographs 22, Amer. Math. Soc., Providence, RI, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molchanov, V.F., Grosheva, L.I. Canonical and Boundary Representations on the Lobachevsky Plane. Acta Applicandae Mathematicae 73, 59–77 (2002). https://doi.org/10.1023/A:1019770619285

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019770619285

Navigation