Skip to main content
Log in

Detection and partial characterization of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The expression of distorted DNA-binding factors was studied in developing zebrafish (Danio rerio) using UV-damaged DNA as the binding target. A strong and high-shifting binding activity was detected in the extracts of zebrafish early embryos (12 h after fertilization), and the expression of this activity dramatically decreased in 60 to 84-h-old zebrafish. The embryonic extracts produced a similar pattern of high-shifting complexes after incubating with a CPD-specific or a 6-4PP-specific probe, while different types of low-shifting complexes were generated by the extracts of 84-h-old larvae. The formation of high-shifting complexes was suppressed in the presence of NaCl at 0.25 M or higher concentrations, yet the production of low-shifting complexes was stimulated by increasing salt concentration. The binding activity expressed in zebrafish embryos was apparently unrelated to NER-associated damage-recognition protein XPA, since two polypeptides recognized by an anti-human XPA antibody were detected only in 84-h-old zebrafish extracts. A competitive binding assay indicated that both CPDs and 6-4PPs were recognized by the same binding activity expressed in 12-h-old zebrafish, and this activity contained at least two protein fractions that were eluted from a DEAE-cellulose column by NaCl at 0.1 M and 0.2 M. UV crosslinking of the two NaCl eluates to a 6-4PP probe produced covalent complexes with the same electrophoretic mobility except one 34-kDa complex generated by the 0.1 M NaCl eluate, suggesting the existence of two multisubunit damage-recognition protein complexes in zebrafish embryos. UV-binding factors found in 12-h-old zebrafish embryos may be involved in processing developmental stage-specific DNA structures similar to UV-damaged DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramic, M., Levine, A.S. and Protic, M. 1991. Purification of an ultraviolet-inducible, damage-specific DNA-binding protein from primate cells. J. Biol. Chem. 266: 22493–22500.

    PubMed  CAS  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Brownile, A. and Zon, L. 1999. The zebrafish as a model system for the study of hematopoiesis. Bioscience 49: 382–392.

    Article  Google Scholar 

  • Burns, J.L., Guzder, S.N., Sung, P., Prakash, S. and Prakash, L. 1996. An affinity of human replication protein A for ultravioletdamaged DNA: Implications for damage recognition in nucleotide excision repair. J. Biol. Chem. 271: 11607–11610.

    Article  PubMed  CAS  Google Scholar 

  • Chan, G.L., Doetsch, P.W. and Haseltine, W.A. 1985. Cyclobutane pyrimidine dimers and (6-4)photoproducts block polymerization by DNA polymerase I. Biochemistry 24: 5723–5728.

    Article  PubMed  CAS  Google Scholar 

  • Cleaver, J.E. and States, J.C. 1997. The DNA damage-recognition problem in human and other eukaryotic cells: The XPA damage binding protein. Biochem. J. 328: 1–12.

    PubMed  CAS  Google Scholar 

  • Cleaver, J.E., Charles, W.C., McDowell, M.L., Sadinski, W.J. and Mitchell, D.L. 1995. Overexpression of the XPA repair gene increases resistance to ultraviolet radiation in human cells by selective repair of DNA damage. Cancer Res. 55: 6152–6160.

    PubMed  CAS  Google Scholar 

  • Driever, W., Stemple, D., Schier, A. and Solnica-Krezel, L. 1994. Zebrafish: genetic tools for studying vertebrate development, Trends Genet. 10: 152–159.

    Article  PubMed  CAS  Google Scholar 

  • Franklin, W.A., Doetsch, P.W. and Haseltine, W.A. 1985. Structural determination of the ultraviolet light-induced thymine-cytosine pyrimidine-pyrimidone(6-4) photoproduct. Nucl. Acids Res. 13: 5317–5325.

    PubMed  CAS  Google Scholar 

  • He, Z., Henricksen, L.A., Wold, M.S. and Ingles, C.J. 1995. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374: 566–569.

    Article  PubMed  CAS  Google Scholar 

  • Ikegami, T., Kuraoka, I., Saijo, M., Kodo, N., Kyogoku, Y., Morikawa, K., Tanaka, K. and Shirakawa, M. 1999. Resonance assignments, solution structure, and backbone dynamics of the DNA-and RPA-binding domain of human repair factor XPA. J. Biochem. 125: 495–506.

    PubMed  CAS  Google Scholar 

  • Jones, C.J. and Wood, R.D. 1993. Preferential binding of the xeroderma pigmentosum group A complementing protein to damaged DNA. Biochemistry 32: 12096–12104.

    Article  PubMed  CAS  Google Scholar 

  • Keeney, S., Chang, G.I. and Linn, S. 1993. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem. 268: 293–300.

    Google Scholar 

  • Kim, S.T., Malhorta, K., Taylor, J.S. and Sancar, A. 1996. Purification and partial characterization of (6-4)photoproduct photolyase from Xenopus laevis. Photochem. Photobiol. 63: 292–295.

    PubMed  CAS  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. and Schilling, T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203: 253–310.

    PubMed  CAS  Google Scholar 

  • Kubota, S., Ishibashi, T. and Kohno, S. 1997. A germline restricted highly repetitive DNA sequence in Paramyxine atami: An interspecifically conserved, but somatically eliminated, element. Mol. Gen. Genet. 256: 252–256.

    Article  PubMed  CAS  Google Scholar 

  • Lippke, J.A., Gordon, L.K., Brash, D.E. and Haseltine, W.A. 1981. Distribution of UV light-induced damage in a defined sequence of human DNA: Detection of alkaline-sensitive lesions at pyrimidine nucleoside-cytidine sequences. Proc. Natl. Acad. Sci. USA 78: 3388–3392.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D.L. and Nairn, R.S. 1989. The biology of the (6-4) photoproduct. Photochem. Photobiol. 49: 805–819.

    PubMed  CAS  Google Scholar 

  • Otoshi, E., Yagi, T., Mori, T., Matsunaga, T., Nikaido, O., Kim, S.T., Hitomi, K., Ikenaga, M. and Todo, T. 2000. Respective roles of cyclobutane pyrimidine dimers, (6-4) photoproducts, and minor photoproducts in ultraviolet mutagenesis of repair-deficient xeroderma pigmentosum A cells. Cancer Res. 60: 1729–1735.

    PubMed  CAS  Google Scholar 

  • Otrin, V.R., McLenigan, M., Takao, M., Levine, A.S. and Protic, M. 1997. Translocation of a UV-damaged DNA binding protein into a tight association with chromatin after treatment of mammalian cells with UV light. J. Cell Sci. 110: 1159–1168.

    PubMed  CAS  Google Scholar 

  • Otrin, V.R., Kuraoka, I., Nardo, T., McLenigan, M., Eker, A.P.M., M. Stefanini, M., Levine, A.S. and Wood, R.D. 1998. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Mol. Cellu. Biol. 18: 3182–3190.

    CAS  Google Scholar 

  • Pasheva, E.A., Pashev, I.G. and Favre, A. 1998. Preferential binding of high mobility group I protein to UV-damaged DNA: Role of the COOH-terminal domain. J. Biol. Chem. 273: 24730–24736.

    Article  PubMed  CAS  Google Scholar 

  • Samuel, A. 2000. Vertebrate evolution: Recent perspectives from fish, Trends Genet. 16: 54–56.

    Article  Google Scholar 

  • Sancar, G.B. 1990. DNA photolyases: Physical properties, action mechanism and roles in dark repair. Mutat. Res. 236: 147–160.

    PubMed  CAS  Google Scholar 

  • Seidl, C. and Moritz, K.B. 1998. A novel UV-damaged DNA binding protein emerges during the chromatin-eliminating cleavage period in Ascaris suum, Nucl. Acids Res. 26: 768–777.

    Article  PubMed  CAS  Google Scholar 

  • Setlow, R.B. 1966. Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153: 379–386.

    PubMed  CAS  Google Scholar 

  • Szewczuk, Z., Petry, I., Schwanbeck, R. and Renner, U. 1999. Constitutive phosphorylation of the acidic tails of the high mobility group I proteins by casein kinase II alters their conformation, stability, and DNA binding specificity. J. Biol. Chem. 274: 20116–20122.

    PubMed  Google Scholar 

  • Tanaka, K., Miura, N., Satokata, I., Miyamoto, I., Yoshida, M.C., Satoh, Y., Kondo, S., Yasui, A., Okayama, H. and Okada, Y. 1990. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc finger domain. Nature 348: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Vichi, P., Coin, F., Renaud, J-P., Vermeulen, W., Hoeijmakers, J.H.J., Moras, D. and Egly, J-M. 1997. Cisplatin-and UVdamaged DNA lure the basal transcription factor TFIID/TBP. EMBO J. 16: 7444–7456.

    Article  PubMed  CAS  Google Scholar 

  • Wakasugi, M. and Sancar, A. 1998. Assembly, subunit composition, and footprint of human DNA repair excision nuclease. Proc. Natl. Acad. Sci. USA 95: 6669–6674.

    Article  PubMed  CAS  Google Scholar 

  • Wood, R.D. 1996. DNA repair in eukaryotes. Annu. Rev. Biochem. 65: 135–167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, T., Cheng, C., Shih, C. et al. Detection and partial characterization of a UV-damaged-DNA binding activity highly expressed in zebrafish (Danio rerio) embryos. Fish Physiology and Biochemistry 25, 41–51 (2001). https://doi.org/10.1023/A:1019755900858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019755900858

Navigation