Skip to main content
Log in

Vertex Algebras and Combinatorial Identities

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In the 1980's, J. Lepowsky and R. Wilson gave a Lie-theoretic interpretation of Rogers–Ramanujan identities in terms of level 3 representations of affine Lie algebra sl(2,C)~. When applied to other representations and affine Lie algebras, Lepowsky and Wilson's approach yielded a series of other combinatorial identities of the Rogers–Ramanujan type. At about the same time, R. Baxter rediscovered Rogers–Ramanujan identities within the context of statistical mechanics. The work of R. Baxter initiated another line of research which yielded numerous combinatorial and analytic generalizations of Rogers–Ramanujan identities. In this note, we describe some ideas and results related to Lepowsky and Wilson's approach and indicate the connections with some results in combinatorics and statistical physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W. W. and Loustaunau, P.: An Introduction to Gröbner Bases, Grad. Stud. Math. 3, Amer. Math. Soc., Providence, 1996.

    Google Scholar 

  2. Alladi, K., Andrews, G. E. and Gordon, B.: Refinements and generalizations of Capparelli's conjecture on partitions, J. Algebra 174 (1995), 636-658.

    Google Scholar 

  3. Andrews, G. E.: Some new partition theorems, J. Combin. Theory 2 (1967), 431-436.

    Google Scholar 

  4. Andrews, G. E.: A polynomial identity which implies the Rogers-Ramanujan identities, Scripta Math. 28 (1970), 297-305.

    Google Scholar 

  5. Andrews, G. E.: The Theory of Partitions, Encyclop. Math. Appl., Addison-Wesley, Amsterdam, 1976.

    Google Scholar 

  6. Andrews, G. E., Baxter, R. J. and Forrester, P. J.: Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Statist. Phys. 35 (1984), 193-266.

    Google Scholar 

  7. Baxter, R. J.: Rogers-Ramanujan identities in the hard hexagon model, J. Statist. Phys. 26 (1981), 427-452.

    Google Scholar 

  8. Berkovich, A. and McCoy, B. M.: Rogers-Ramanujan identities: A century of progress from mathematics to physics, In: Proc. ICMBerlin 1998, Vol. III: Invited Lectures, Documenta Math. (1998), 163-172.

    Google Scholar 

  9. Berkovich, A., McCoy, B. M. and Schilling, A.: Rogers-Schur-Ramanujan type identities for the M(p,p') minimal models of conformal field theory, Comm. Math. Phys. 191 (1998), 325-395.

    Google Scholar 

  10. J. Borcea: Vertex operator algebras, annihilating fields, and a duality-like property for rank two affine Lie algebras, Preprint 1998:9, Dept. Math., Lund Univ.

  11. Bressoud D.: A generalization of the Rogers-Ramanujan identities for all moduli, J. Combin. Theory 27 (1979), 64-68.

    Google Scholar 

  12. Burge, W. H.: A correspondence between partitions related to generalizations of the Rogers-Ramanujan identities, Discrete Math. 34 (1981), 9-15.

    Google Scholar 

  13. Capparelli, S.: On some representations of twisted affine Lie algebras and combinatorial identities, J. Algebra 154 (1993), 335-355.

    Google Scholar 

  14. Date, E., Jimbo, M., Kuniba, A., Miwa, T. and Okado, M.: Path space realization of the basic representation of A( 1 ) n, In: V. G. Kac (ed.), Infinite Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys. 7, World Scientific, Singapore, 1989, pp. 108-123.

    Google Scholar 

  15. Dong, C. and Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators, Progr. in Math. 112, Birkhäuser, Boston, 1993.

    Google Scholar 

  16. Feigin, B., Kedem, R., Loktev, S., Miwa, T. and Mukhin, E.: Combinatorics of the s^l2 spaces of coinvariants, Transformation Groups 6 (2001), 25-52.

    Google Scholar 

  17. Feigin, B. and Miwa, T.: Extended vertex operator algebras and monomial bases, math.QA/9901067.

  18. Feigin, B. L. and Stoyanovsky, A. V.: Quasi-particles models for the representations of Lie algebras and geometry of flag manifold, hep-th/9308079.

  19. Frenkel, I. B. and Kac, V. G.: Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980), 23-66.

    Google Scholar 

  20. Frenkel, I. B., Huang, Y.-Z. and Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104(494) (1993).

  21. Frenkel, I. B. and Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123-168.

    Google Scholar 

  22. Georgiev, G.: Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286; II. Parafermionic space, q-alg/9504024.

    Google Scholar 

  23. Gordon, B.: A combinatorial generalization of the Rogers-Ramanujan identities,Amer. J. Math. 83 (1961), 393-399.

    Google Scholar 

  24. Jimbo, M., Misra, K. C., Miwa, T. and Okado, M.: Combinatorics of representations of U q (s^l(n)) at q = 0, Comm. Math. Phys. 136 (1991), 543-566.

    Google Scholar 

  25. Jing, N., Misra, K. C. and Savage, C. D.: On multi-color partitions and the generalized Rogers-Ramanujan identities, CO/9907183.

  26. Kac, V. G.: Infinite-Dimensional Lie Algebras, 3rd edn, Cambridge Univ. Press, Cambridge, 1990.

    Google Scholar 

  27. Kang, S.-J., Kashiwara, M., Misra, K. C., Miwa, T., Nakashima, T. and Nakayashiki, A.: Affine crystals and vertex models, Internat. J. Modern Phys. A 7, Suppl. 1A, Proc. RIMS Res. Project 1991, 'Infinite Analysis', World Scientific, Singapore, 1992, pp. 449-484.

    Google Scholar 

  28. Kedem, R., Klassen, T. R., McCoy, B. M. and Melzer, E.: Fermionic quasiparticle representations for characters of G (1) 1 x G (1) 1 /G (1) 2, Phys. Lett. B 304 (1993), 263-270.

    Google Scholar 

  29. Lepowsky, J. and Milne, S.: Lie algebraic approaches to classical partition identities, Adv.Math. 29 (1978), 15-59.

    Google Scholar 

  30. Lepowsky, J. and Primc, M.: Structure of the standard modules for the affine Lie algebra A (1) 1, Contemporary Math. 46 (1985).

  31. Lepowsky, J. and Wilson, R. L.: The structure of standard modules, I: Universal algebras and the Rogers-Ramanujan identities, Invent. Math. 77 (1984), 199-290; II: The case A (1) 1, principal gradation, Invent. Math. 79 (1985), 417-442.

    Google Scholar 

  32. Li, H.-S.: Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), 143-195.

    Google Scholar 

  33. Mandia, M.: Structure of the level one standard modules for the affine Lie algebras B (1), F (1) 4 and G (1) 2, Mem. Amer. Math. Soc. 362 (1987).

  34. Meurman, A. and Primc, M.: Annihilating ideals of standard modules of s^l(2,ℂ) and combinatorial identities, Adv. Math. 64 (1987), 177-240.

    Google Scholar 

  35. Meurman, A. and Primc, M.: Annihilating fields of standard modules of s^l(2,ℂ) and combinatorial identities, Mem. Amer. Math. Soc. 652 (1999).

  36. Meurman, A. and Primc, M.: A basis of the basic s^l(3,ℂ)-module, QA/98120029.

  37. Misra, K. C.: Structure of certain standard modules for A (1) n and the Rogers-Ramanujan identities, J. Algebra 88 (1984), 196-227.

    Google Scholar 

  38. Primc, M.: Vertex operator construction of standard modules for A (1) n, Pacific J. Math. 162 (1994), 143-187.

    Google Scholar 

  39. Primc, M.: Basic representations for classical affine Lie algebras, J. Algebra 228 (2000), 1-50.

    Google Scholar 

  40. Tsuchiya, A., Ueno, K. and Yamada, Y.: Conformal field theory on the universal family of stable curves with gauge symmetry, Adv. Stud. Pure Math. 19 (1989), 459-466.

    Google Scholar 

  41. Warnaar, S. O.: The Andrews-Gordon identities and q-multinomial coefficients, Comm. Math. Phys. 184 (1997), 203-232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Primc, M. Vertex Algebras and Combinatorial Identities. Acta Applicandae Mathematicae 73, 221–238 (2002). https://doi.org/10.1023/A:1019747408807

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019747408807

Navigation