Skip to main content
Log in

Signalling Mechanisms Involved in the Induction of Inducible Nitric Oxide Synthase by Lactobacillus Rhamnosus GG, Endotoxin, and Lipoteichoic Acid

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Background and Aims: Probiotic Lactobacillus rhamnosus GG (Lactobacillus GG) has been found beneficial in the treatment of viral and antibiotic-associated diarrhea. Recently, it has also been shown to induce nitric oxide (NO) production, and have some other immunostimulatory effects. The aim of the present study was to investigate the mechanisms involved in the induction of inducible nitric oxide synthase (iNOS) and NO production by Lactobacillus GG.

Methods and Results: iNOS expression and NO production induced by Lactobacillus GG, lipopolysaccharide (LPS), and lipoteichoic acid (LTA) was abrogated by NOS inhibitors L-NMMA and 1400W, by a protein synthesis inhibitor cycloheximide, by a tyrosine kinase inhibitor genistein and by a NF-κB inhibitor pyrrolidinedithiocarbamate (PDTC) in J774 macrophages. Polymyxin B inhibited NO production induced by LPS, but did not inhibit Lactobacillus GG induced NO production. P42/44 MAP-kinase inhibitor PD98059, dexamethasone and cyclosporine A inhibited partially iNOS protein expression and NO formation in LactobacillusGG, LPS and LTA treated cells. Ro 31-8220 (protein kinase C inhibitor) and SB203580 (p38 MAP-kinase inhibitor) had only a minor effect on NO production.

Conclusions: Lactobacillus GG induced NO production through iNOS pathway and the mechanisms mediating that process were very similar with those involved in LPS and LTA induced NO synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alderton W. K., C. E. Cooper, and R. G. Knowles. 2001. Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357:593–615.

    Google Scholar 

  2. Moncada S. and E. A. Higgs. 1995. Molecular mechanisms and therapeutic strategies related to nitric oxide. FASEB J. 9:1319–1330.

    Google Scholar 

  3. MacMicking J., Q. W. Xie, and C. Nathan. 1997. Nitric oxide and macrophage function. Ann. Rew. Immunol. 15:323–350.

    Google Scholar 

  4. Moilanen, E., B. J. R. Whittle, and S. M oncada. 1999. Nitric Oxide as a Factor in Inflammation. Inflammation: Principles and Clinical Correlations, Gallin, J.I. and R. Snyderman, eds., Philadelphia, PA: Lippincott Williams & Wilkins, pp. 787–800.

    Google Scholar 

  5. Hickey M. J., D. N. Granger, and P. Kubes. 2001. Inducible nitric oxide synthase (iNOS) and regulation of leucocyte/endothelial cell interactions: studies in iNOS-deficient mice. Acta Physiol. Scand. 173:119–126.

    Google Scholar 

  6. Hickey M. J., K. A. Sharkey, E. G. Sihota, P. H. Reinhardt, J.D. MacMicking, C. Nathan, and P. Kubes. 1997. Inducible nitric oxide synthase-deficient mice have enhanced leukocyte-endothelium interactions in endotoxemia. FASEB J. 11:955–964.

    Google Scholar 

  7. Kubes P., E. Sihota, and M. J. Hickey. 1997. Endogenous but not exogenous nitric oxide decreases TNF-alpha-induced leukocyte rolling. Am. J. Physiol. 273:G628–G635.

    Google Scholar 

  8. McCafferty D. M., J. S. Mudgett, M. G. Swain, and P. Kubes. 1997. Inducible nitric oxide synthase plays a critical role in resolving intestinal inflammation. Gastroenterology. 112:1022–1027.

    Google Scholar 

  9. Geng Y., R. Maier, and M. Lotz. 1995. Tyrosine kinases are involved with the expression of inducible nitric oxide synthase in human articular chondrocytes. J. Cell. Physiol. 163:545–554.

    Google Scholar 

  10. Paul A., K. Doherty, and R. Plevin. 1997. Differential regulation by protein kinase C isoforms of nitric oxide synthase induction in RAW 264.7 macrophages and rat aortic smooth muscle cells. Brit.J. Pharmacol. 120:940–946.

    Google Scholar 

  11. Ajizian S. J., B. K. English, and E. A. Meals. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferongamma.J. Infect. Dis. 179:939–944.

    Google Scholar 

  12. Xie Q. W., Y. Kashiwabara, and C. Nathan. 1994. Role of transcription factor NF-kappaB/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269:4705–4708.

    Google Scholar 

  13. De Kimpe S. J., M. L. Hunter, C. E. Bryant, C. Thiemermann, and J. R. Vane. 1995. Delayed circulatory failure due to the induction of nitric oxide synthase by lipoteichoic acid from Staphylococcus aureus in anaesthetized rats. Brit. J. Pharmacol. 114:1317–1323.

    Google Scholar 

  14. Alvarez-Olmos M. I., and R. A. Oberhelman. 2001. Probiotic agents and infectious diseases: A modern perspective on a traditional therapy. Clin. Infect. Dis. 32:1567–1576.

    Google Scholar 

  15. Kaila M., E. Isolauri, E. Soppi, E. Virtanen, S. Laine, and H. Arvilommi. 1992. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain. Pediatr. Res. 32:141–144.

    Google Scholar 

  16. Kaila M., E. Isolauri, M. Saxelin, H. Arvilommi, and T. Vesikari. 1995. Viable versus inactivated lactobacillus strain GG in acute rotavirus diarrhoea. Arch. Dis. Child. 72:51–53.

    Google Scholar 

  17. Miettinen M., J. Vuopio-Varkila, and K. Varkila. 1996. Production of human tumor necrosis factor alpha, interleukin-6, and interleukin-10 is induced by lactic acid bacteria. Infect. Immun. 64:5403–5405.

    Google Scholar 

  18. Miettinen M., A. Lehtonen, I. Julkunen, and S. Matikainen. 2000.Lactobacilli and Streptococci activate NF-kB and STAT signaling pathways in human macrophages. J. Immunol. 164:3733–37340.

    Google Scholar 

  19. Korhonen R., R. Korpela, M. Saxelin, M. Mki, H. Kankaanranta, and E. Moilanen. 2001. Induction of nitric oxide synthesis by probiotic Lactobacillus rhamnosus GG in J774 macrophages and human T84 intestinal epithelial cells. Inflammation. 25:223–232.

    Google Scholar 

  20. Green L. C., D. A. Wagner, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126:131–138.

    Google Scholar 

  21. Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Google Scholar 

  22. Garvey E. P., J. A. Oplinger, E. S. Furfine, R. J. Kiff, F. Laszlo, B. J. Whittle, and R. G. Knowles. 1997. 1400W is a slow, tight binding, and highly selective inhibitor of inducible nitric-oxide synthase in vitro and in vivo. J. Biol. Chem. 272:4959–4963.

    Google Scholar 

  23. Walter R., A. Schaffner, N. Blau, L. Kierat, and G. Schoedon. 1994. Tetrahydrobiopterin is a secretory product of murine vascular endothelial cells. Biochem. Biophys. Res. Co. 203:1522–1526.

    Google Scholar 

  24. Togari A., M. Arai, M. Mogi, A. Kondo, and T. Nagatsu. 1998. Coexpression of GTP cyclohydrolase I and inducible nitric oxide synthase mRNAs in mouse osteoblastic cells activated by proin-flammatory cytokines. FEBS Lett. 428:212–216.

    Google Scholar 

  25. Fenton M. J. and D. T. Golenbock. 1998. LPS-binding proteins and receptors. J. Leukocyte Biol. 64:25–32.

    Google Scholar 

  26. Schwandner R., R. Dziarski, H. Wesche, M. Rothe, and C. J. Kirschning. 1999. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274:17406–17409.

    Google Scholar 

  27. Yoshimura A., E. Lien, R. R. Ingalls, E. Tuomanen, R. Dziarski, and D. Golenbock. 1999. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163:1–5.

    Google Scholar 

  28. Aderem A. and R. J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature. 406:782–787.

    Google Scholar 

  29. Sweet M. J. and D. A. Hume. 1996. Endotoxin signal transduction in macrophages. J. Leukocyte Biol. 60:8–26.

    Google Scholar 

  30. Alessi D. R., A. Cuenda, P. Cohen, D. T. Dudley, and A. R. Saltiel. 1995. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J.Biol. Chem. 270:27489–27494.

    Google Scholar 

  31. Schumann R. R., C. J. Kirschning, A. Unbehaun, H. P. Aberle, H. P. Knope, N. Lamping, R. J. Ulevitch, and F. Herrmann. 1996. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins.Mol. Cell. Biol. 16:3490–3503.

    Google Scholar 

  32. Chen C. C. and J. K. Wang. 1999. p38 but not p44/42 mitogenactivated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages.Mol. Pharmacol. 55:481–488.

    Google Scholar 

  33. Lahti A., M. Lhde, H. Kankaanranta, and E. Moilanen. 2000.Inhibition of extracellular signal-regulated kinase suppresses endotoxin-induced nitric oxide synthesis in mouse macrophages and in human colon epithelial cells. J. Pharm. Exp. Ther. 294:1188–1194.

    Google Scholar 

  34. Martel-Pelletier J., F. Mineau, D. Jovanovic, J. A. Di Battista, and J. P. Pelletier. 1999. Mitogen-activated protein kinase and nuclear factor B together regulate interleukin-17-induced nitric oxide production in human osteoarthritic chondrocytes: possible role of transactivating factor mitogen-activated protein kinase-activated protein kinase (MAPKAPK). Arthritis Rheum. 42:2399–2409.

    Google Scholar 

  35. Lähde M., R. Korhonen, and E. Moilanen. 2000. Regulation of nitric oxide production in cultured human T84 intestinal epithelial cells by nuclear factor-B-dependent induction of inducible nitric oxide synthase after exposure to bacterial endotoxin. Aliment.Pharmacol. Ther. 14:945–954.

    Google Scholar 

  36. Taylor B. S., M. E. de Vera, R. W. Ganster, Q. Wang, R. A. Shapiro, S. M. J. Morris, T. R. Billiar, and D. A. Geller. 1998.Multiple NF-kB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J. Biol. Chem. 273:15148–15156.

    Google Scholar 

  37. Marks-Konczalik J., S. C. Chu, and J. Moss. 1998. Cytokine-mediated transcriptional induction of the human inducible nitric oxide synthase gene requires both activator protein 1 and nuclear factor B-binding sites. J. Biol. Chem. 273:22201–22208.

    Google Scholar 

  38. Sherman M. P., E. E. Aeberhard, V. Z. Wong, J. M. Griscavage, and L. J. Ignarro. 1993. Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages.Biochem. Biophys. Res. Co. 191:1301–1308.

    Google Scholar 

  39. Hattori Y. and N. Nakanishi. 1995. Effects of cyclosporin A and FK506 on nitric oxide and tetrahydrobiopterin synthesis in bacterial lipopolysaccharide-treated J774 macrophages. Cell. Immunol. 165:7–11.

    Google Scholar 

  40. Dusting G. J., K. Akita, H. Hickey, M. Smith, and V. Gurevich. 1999. Cyclosporin A and tacrolimus (FK506) suppress expression of inducible nitric oxide synthase in vitro by different mechanisms.Brit. J. Pharmacol. 128:337–344.

    Google Scholar 

  41. Radomski M. W., R. M. Palmer, and S. Moncada. 1990. Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc.Natl. Acad. Sci. USA. 87:10043–10047.

    Google Scholar 

  42. Szabo C., C. Thiemermann, C. C. Wu, M. Perretti, and J. R. Vane. 1994. Attenuation of the induction of nitric oxide synthase by endogenous glucocorticoids accounts for endotoxin tolerance in vivo. Proc. Natl. Acad. Sci. USA. 91:271–275.

    Google Scholar 

  43. Kunz D., G. Walker, W. Eberhardt, and J. Pfeilschifter. 1996.Molecular mechanisms of dexamethasone inhibition of nitric oxide synthase expression in interleukin 1-stimulated mesangial cells: evidence for the involvement of transcriptional and posttranscriptional regulation. Proc. Natl. Acad. Sci. USA. 93:255–259.

    Google Scholar 

  44. Amin A. R., P. E. Di Cesare, P. Vyas, M. Attur, E. Tzeng, T. R. Billiar, S. A. Stuchin, and S. B. Abramson. 1995. The expression Korhonen, Korpela, and Moilanen 214 and regulation of nitric oxide synthase in human osteoarthritisaffected chondrocytes: evidence for up-regulated neuronal nitric oxide synthase. J. Exp. Med. 182:2097–2102.

    Google Scholar 

  45. Grabowski P. S., H. Macpherson, and S. H. Ralston. 1996. Nitric oxide production in cells derived from the human joint. Brit. J. Rheumatol. 35:207–212.

    Google Scholar 

  46. Salzman A., A. G. Denenberg, I. Ueta, M. O'Connor, S. C. Linn, and C. Szabo. 1996. Induction and activity of nitric oxide synthase in cultured human intestinal epithelial monolayers. Am. J. Physiol. 270:G565–G573.

    Google Scholar 

  47. Saura M., D. Perez-Sala, F. J. Canada, and S. Lamas. 1996. Role of tetrahydrobiopterin availability in the regulation of nitric-oxide synthase expression in human mesangial cells. J. Biol. Chem. 271:14290–14295.

    Google Scholar 

  48. Linscheid P., A. Schaffner, and G. Schoedon. 1998. Modulation of inducible nitric oxide synthase mRNA stability by tetrahydrobiopterin in vascular smooth muscle cells. Biochem. Biophys. Res.Co. 243:137–141.

    Google Scholar 

  49. Isolauri E., M. Juntunen, T. Rautanen, P. Sillanaukee, and T. Koivula. 1991. A human Lactobacillus strain (Lactobacillus casei sp strain GG) promotes recovery from acute diarrhea in children. Pediatrics. 88:90–97.

    Google Scholar 

  50. Biller J. A., A. J. Katz, A. F. Flores, T. M. Buie, and S. L. Gorbach. 1995. Treatment of recurrent Clostridium difficile colitis with Lactobacillus GG. J. Pediatr. Gastr. Nutr. 21:224–226.

    Google Scholar 

  51. Silva M., N. V. Jacobus, C. Deneke, and S. L. Gorbach. 1987.Antimicrobial substance from a human Lactobacillus strain. Antimicrob. Agents Chemother. 31:1231–1233.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korhonen, R., Korpela, R. & Moilanen, E. Signalling Mechanisms Involved in the Induction of Inducible Nitric Oxide Synthase by Lactobacillus Rhamnosus GG, Endotoxin, and Lipoteichoic Acid. Inflammation 26, 207–214 (2002). https://doi.org/10.1023/A:1019720701230

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019720701230

Navigation