Skip to main content
Log in

Electrostatic Model of Edge Luminescence of Heavily Doped Degenerate Semiconductors

  • Published:
Journal of Applied Spectroscopy Aims and scope

Abstract

We propose a model of the narrowing of a forbidden band due to doping of crystalline semiconductors with hydrogen‐like impurities with allowance for the following factors: spatial fluctuations of an electrostatical potential, exchange interaction of majority charge carriers, screening of the minority charge carrier by a cloud of the majority ones, and also tunneling at the level of percolation. The dependence of the position of the edge luminescence band maximum on the concentration of impurities for the degrees of their compensation from a weak to an intermediate one has been calculated. The results agree with the experimental data for cryogenic temperatures in a wide range of change in the equilibrium concentration of electrons (holes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. D. Mahan, J. Appl. Phys., 51, No. 5, 2634–2646 (1980).

    Google Scholar 

  2. A. P. Levanyuk and V. V. Osipov, Usp. Fiz. Nauk, 133, No. 3, 427–478 (1981).

    Google Scholar 

  3. S. C. Jain and D. J. Roulston, Solid-State Electron., 34, No. 5, 453–465 (1991).

    Google Scholar 

  4. S. C. Jain, J. M. McGregor, and D. J. Roulston, J. Appl. Phys., 68, No. 7, 3747–3749 (1990).

    Google Scholar 

  5. L. Wang, N. M. Haegel, and J. R. Lowney, Phys. Rev., B49, No. 16, 10976–10985 (1994).

    Google Scholar 

  6. M. Lanno and J. Bourgoin, Point Defects in Semiconductors. Experimental Aspects [Russian translation], Moscow (1985).

  7. A. A. Patrin and M. I. Tarasik, Zh. Prikl. Spektrosk., 65, No. 4, 576–580 (1998).

    Google Scholar 

  8. S. C. Jain, T. J. Gosling, D. H. J. Totterdell, J. Poortmans, R. P. Mertens, and R. Van Overstraeten, Solid-State Electron., 34, No. 5, 445–451 (1991).

    Google Scholar 

  9. F. Gebhard, The Mott Metal- Insulator Transition, Berlin (2000).

  10. N. A. Poklonskii and A. I. Syaglo, Fiz. Tverd. Tela, 40, No. 1, 147–151 (1998).

    Google Scholar 

  11. A. G. Zabrodskii, M. V. Alekseenko, A. G. Andreev, and M. P. Timofeev, in: Ext. Abstr. of Papers presented at the 25th All-Union Meeting on Low-Temperature Physics [in Russian], Leningrad (1988), pp. 60–61.

  12. A. G. Zabrodskii, A. G. Andreev, and S. V. Egorov, Phys. Status Solidi (b), 205, No. 1, 61–68 (1998).

    Google Scholar 

  13. R. Rentzsch, A. N. Ionov, C. Reich, M. Muller, B. Sandow, P. Fozooni, M. J. Lea, V. Ginodman, and I. Shlimak, Phys. Status Solidi (b), 205, No. 1, 269–273 (1998).

    Google Scholar 

  14. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Berlin (1999).

  15. O. V. Konstantinov, O. I. Obolenskii, and B. V. Tsarenkov, Fiz. Tekh. Poluprovodn., 31, No. 5, 571–576 (1997).

    Google Scholar 

  16. J. M. Ziman, Models of Disorder. The Theoretical Physics of Homogeneously Disordered Systems, Cambridge (1979).

  17. V. L. Bonch-Bruevich and S. G. Kalashnikov, Physics of Semiconductors [in Russian], Moscow (1990).

  18. N. A. Poklonskii and A. I. Syaglo, Zh. Prikl. Spektrosk., 64, No. 3, 367–373 (1997).

    Google Scholar 

  19. M. Kendall and P. Moran, Geometric Probabilities [Russian translation], Moscow (1972).

  20. F. Seitz, The Modern Theory of Solids, New York (1940).

  21. J. C. Slater, Insulators, Semiconductors, and Metals, New York (1967).

  22. D. N. Bychkovskii, O. V. Konstantinov, and B. V. Tsarenkov, Fiz. Tekh. Poluprovodn., 29, No. 1, 152–160 (1995).

    Google Scholar 

  23. M. S. Lundstrom, M. E. Klausmeier-Brown, M. R. Melloch, R. K. Ahrenkiel, and B. M. Keyes, Solid-State Electron., 33 No. 6, 693–704 (1990).

    Google Scholar 

  24. J. R. Lowney and H. S. Bennett, J. Appl. Phys., 69, No. 10, 7102–7109 (1991).

    Google Scholar 

  25. A. N. Titkov, E. I. Chaikina, É. M. Komova, and N. G. Ermakova, Fiz. Tekh. Poluprovodn., 15, No. 2, 345–352 (1981).

    Google Scholar 

  26. Zh. Pankov, Optical Processes in Semiconductors [in Russian], Moscow (1973).

  27. V. P. Gribkovskii, Theory of Absorption and Emission of Light in Semiconductors [in Russian], Minsk (1975).

  28. G. Borghs, K. Bhattacharyya, K. Deneffe, and P. Van Meighem, J. Appl. Phys., 66, No. 9, 4381–4386 (1989).

    Google Scholar 

  29. P. E. Schmid, M. L. W. Thewalt, and W. P. Dumke, Solid State Commun., 38, No. 11, 1091–1093 (1981).

    Google Scholar 

  30. Yu. D. Arbuzov and M. Yu. Kolenkin, Zh. Éksp. Teor. Fiz., 95, No. 2, 621–630 (1989).

    Google Scholar 

  31. E. O. Kane, Solid-State Electron., 28, No. 1/2, 3–10 (1985).

    Google Scholar 

  32. J. Wagner and J. A. del Alamo, J. Appl. Phys., 63, No. 2, 425–429 (1988).

    Google Scholar 

  33. J. S. Lee, I. Kim, B.-D. Choe, W. G. Jeong, Y. K. Sin, and W. S. Min, J. Appl. Phys., 79, No. 12, 9278–9282 (1996).

    Google Scholar 

  34. V. A. Vil'kotskii, D. S. Domanevskii, S. V. Zhokhovets, V. V. Krasovskii, and M. V. Prokopenya, Fiz. Tekh. Poluprovodn., 19, No. 9, 1660–1666 (1985).

    Google Scholar 

  35. M. S. Bresler, O. B. Gusev, and A. O. Stepanov, Fiz. Tekh. Poluprovodn., 17, No. 7, 1195–1201 (1983).

    Google Scholar 

  36. A. Mooradian and H. Y. Fan, Phys. Rev., 148, No. 2, 873–885 (1966).

    Google Scholar 

  37. H. Q. Zheng, H. Wang, P. H. Zhang, Z. Zeng, K. Radahakrishnan, S. F. Yoon, and G. I. Ng, Solid-State Electron., 44, No. 1, 37–40 (2000).

    Google Scholar 

  38. V. A. Vil'kotskii, D. S. Domanevskii, S. V. Zhokhovets, and M. V. Prokopenya, Fiz. Tekh. Poluprovodn., 18, No. 12, 2193–2198 (1984).

    Google Scholar 

  39. B. G. Arnaudov, V. A. Vil'kotskii, D. S. Domanevskii, and V. D. Tkachev, Fiz. Tekh. Poluprovodn., 11, No. 9, 1799–1802 (1977).

    Google Scholar 

  40. R. Rentzsch and I. S. Shlimak, Phys. Status Solidi (a), 43, No. 1, 231–238 (1977).

    Google Scholar 

  41. V. P. Dobrego and I. S. Shlimak, Phys. Status Solidi, 33, No. 2, 805–809 (1969).

    Google Scholar 

  42. A. P. Shotov and M. S. Murashov, Fiz. Tekh. Poluprovodn., 1, No. 4, 573–586 (1967).

    Google Scholar 

  43. O. Madelung (ed.), Semiconductors — Basic Data, Berlin (1996).

  44. M. Levinstein, S. Rumyantsev, and M. Shur (eds.), Handbook Series on Semiconductor Parameters, Vol. 1, Singapore (1996); Vol. 2, Singapore (1999).

  45. S. Zollner, S. Gopalan, and M. Cardona, Solid State Commun., 77, No. 7, 485–488 (1991).

    Google Scholar 

  46. H. Wang, J. Shah, T. C. Damen, S. W. Pierson, T. L. Reinecke, L. N. Pfeiffer, and K. West, Phys. Rev., B52, No. 24, 17013–17016 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Poklonskii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poklonskii, N.A., Vyrko, S.A. Electrostatic Model of Edge Luminescence of Heavily Doped Degenerate Semiconductors. Journal of Applied Spectroscopy 69, 434–443 (2002). https://doi.org/10.1023/A:1019715602928

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019715602928

Navigation