Skip to main content

Two insulins from channel catfish: purification, structures, receptor-binding and cDNA sequences

Abstract

Two insulins were isolated from an extract of the Brockmann bodies of channel catfish (Ictalurus punctatus). The primary structure of insulin I is: A-Chain: GIVELCCHKP10 CSLHDLQNYC20 N; B-Chain: GAPQHLCGSH10 LVDALYLVCG20 PNGFFYNPK. Insulin II has three amino-acid substitutions compared with insulin I: A14His to Gln, B1Gly to Val, and B13Asp to Glu. Despite some unusual amino acid substitutions in the catfish insulins compared with human insulin, such as A5Gln to Leu, B21Glu to Pro and B22Arg to Asn, those residues believed to constitute the receptor-binding domain are conserved. Consistent with this, catfish insulins I and II were equipotent in inhibiting the binding of [3-[125I] iodotyrosine-A14] human insulin to the soluble human insulin receptor and were only 3-fold less potent than human insulin in the same assays. An analysis of mRNA expression in Brockmann bodies by reverse-transcriptase PCR identified two proinsulin sequences for the channel catfish containing a single, highly conserved C-peptide whose deduced amino acid sequence is REVDPLLGFL10 PPKSAPEGEL20 AEYPYKEYSE30 LMVKR. PCR of genomic DNA with specific proinsulin primers spanning the intron II interrupting the C-peptide of all vertebrate insulins, produced two introns of 105 and 104 bp, respectively. The nucleotide sequences of the introns differ in 13 positions. Because of the high degree of conservation in insulin and C-peptide and the large variability in the small intron, we conclude that the two insulins isolated are the products of different genes and do not simply represent different alleles. The channel catfish is a diploid species that may have undergone gene or chromosome duplication and therefore we propose that multiple insulin genes may not be restricted to polyploid species such as salmonids or sturgeons.

This is a preview of subscription content, access via your institution.

References

  • Al-Mahrouki, A.A., Irwin, D.M., Graham, L.C. and Youson, J.H. 2001. Molecular cloning of preproinsulin cDNAs from several osteoglossomorphs and a cyprinid. Mol. Cell Endocrinol. 174: 51–58.

    Article  PubMed  CAS  Google Scholar 

  • Albert, S.G. 1982. Immunological characterization of catfish (Ictalurus punctatus) insulin and proinsulin. Comp. Biochem. Physiol. 72B: 605–612.

    CAS  Google Scholar 

  • Albert, S.G. and Permutt, M.A. 1979. Proinsulin precursors in catfish pancreatic islets. J. Biol. Chem. 254: 3483–3492.

    PubMed  CAS  Google Scholar 

  • Andoh, T. and Nagasawa, H. 1998a. Two molecular forms of insulin from barfin flounder, Verasper moseri, are derived from a single gene. Zool. Sci. 15: 931–937.

    Article  CAS  Google Scholar 

  • Andoh, T. and Nagasawa, H. 1998b. Purification and structural determination of insulin, glucagons and somatostatins from stone flounder, Kareius bicoloratus. Zool. Sci. 15: 939–943.

    Article  CAS  Google Scholar 

  • Andoh, T., Nagasawa, H. and Matsubara, T. 2000. Multiple molecular forms of glucagon and insulin in the kaluga sturgeon, Huso dauricus. Peptides 21: 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  • Andrews, P.C. and Dixon, J.E. 1981. Isolation and structure of a peptide hormone predicted from a mRNA sequence. A second somatostatin from the catfish pancreas. J. Biol. Chem. 256: 8267–8270.

    PubMed  CAS  Google Scholar 

  • Andrews, P.C., Pubols, M.H., Hermodson, M.A., Sheares, B.T. and Dixon, J.E. 1984. Structure of the 22-residue somatostatin from catfish. An O-glycosylated peptide having multiple forms. J. Biol. Chem. 259: 13267–13272.

    PubMed  CAS  Google Scholar 

  • Andrews, P.C. and Ronner, P. 1985. Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914.

    PubMed  CAS  Google Scholar 

  • Argenton, F., Zecchin, E. and Bortolussi, M. 1999. Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87: 217–221.

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, M., Blundell, T.L., Pitts, J.E., Wood, S.P., Tatnell, M.A., Falkmer, S., Emdin, S.O., Gowan, L.K., Crow, H., Schwabe, C., Wollmer, A. and Strassburger, W. 1983. Dogfish insulin. Eur. J. Biochem. 135: 535–542.

    Article  PubMed  CAS  Google Scholar 

  • Baker, E.N., Blundell, T.L., Cutfield, J.F., Cutfield, S.M., Dodson, E.J., Dodson, G.G., Hodgkin, D.M., Hubbard, R.E., Isaacs, N.W. and Reynolds, C.D. 1988. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos. Trans. R. Soc. Lond B Biol. Sci. 319: 369–456.

    PubMed  CAS  Google Scholar 

  • Bray, G.A. 2000. Afferent signals regulating food intake. Proc. Nutr. Soc. 59: 373–384.

    PubMed  CAS  Google Scholar 

  • Conlon, J.M. 2001. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides 22: 1183–1193.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M. and Thim, L. 1986. Primary structure of insulin and a truncated C-peptide from an elasmobranchian fish, Torpedo marmorata. Gen. Comp. Endocrinol. 64: 199–205.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M, Davis, M.S. and Thim, L. 1987. Primary structure of insulin and glucagon from the flounder (Platichthys flesus). Gen. Comp. Endocrinol. 66: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M., Göke, R., Andrews, P.C. and Thim, L. 1989. Multiple molecular forms of insulin and glucagon-like peptide from the Pacific ratfish (Hydrolagus colliei). Gen. Comp. Endocrinol. 73: 136–146.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M., Andrews, P.C., Thim, L. and Moon, T.W. 1991. The primary structure of glucagon-like peptide, but not insulin has been conserved between the American eel, Anguilla rostrata and the European eel, Anguilla anguilla. Gen. Comp. Endocrinol. 82: 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M., Bondareva, V., Rusakov, Y., Plisetskaya, E.M., Mynarcik, D.C. and Whittaker, J. 1995a. Characterization of insulin, glucagon, and somatostatin from the river lamprey, Lampetra fluviatilis. Gen. Comp. Endocrinol. 100: 96–105.

    Article  PubMed  CAS  Google Scholar 

  • Conlon, J.M., Nielsen, P.F., Youson, J.H. and Potter, I.C. 1995b. Proinsulin and somatostatin from the islet organ of the southernhemisphere lamprey Geotria australis. Gen. Comp. Endocrinol. 100: 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Cutfield, J.F., Cutfield, S.M., Carne, A., Emdin, S.O. and Falkmer, S. 1986. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin). Eur. J. Biochem. 158: 117–123.

    Article  PubMed  CAS  Google Scholar 

  • de Lima, J.A., Oliveira, B. and Conlon, J.M. 1999. Purification and characterization of insulin and peptides derived from proglucagon and prosomatostatin from the fruit-eating fish, the pacu Piaractus mesopotamicus. Comp. Biochem. Physiol. 122B: 127–135.

    CAS  Google Scholar 

  • Flatt, P.R. and Bailey, C.J. 1981. Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20: 573–577.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, V., Winkler, J., Rapoport, T.A., Liebscher, D.H., Coutelle, C. and Rosenthal, S. 1983. Carp preproinsulin cDNA sequence and evolution of insulin genes. Nucl. Acids Res. 11: 4541–4552.

    PubMed  CAS  Google Scholar 

  • Hobart, P.M., Shen, L.P., Crawford, R., Pictet, R.L. and Rutter, W.J. 1995. Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNA's from cloned cDNA's. Science 210: 1360–1363.

    Google Scholar 

  • Jørgensen, C. 1960. Electrophoretic properties of two insulin isolated from flounder (Pleuronectes flesus). Acta Endocrinol. (Copenh.) 51 (Suppl.): 1233–1234.

    Google Scholar 

  • Kavsan, V., Koval, A., Petrenko, O., Roberts, C.T., Jr. and LeRoith, D. 1993. Two insulin genes are present in the salmon genome. Biochem. Biophys. Res. Commun. 191: 1373–1378.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, C., Kjeldsen, T., Wiberg, F.C., Schäffer, L., Hach, M., Havelund, S., Bass, J., Steiner, D.F. and Andersen, A.S. 1997. Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272: 12978–12983.

    Article  PubMed  CAS  Google Scholar 

  • Leibush, B., Lappova, Y., Gutiérrez, J. and Plisetskaya, E.M. 1997. Lamprey but not porcine insulin binds with different affinity to lamprey and rat hepatocytes. Comp. Biochem. Physiol. 116C: 135–139.

    CAS  Google Scholar 

  • Makower, A., Dettmer, R., Rapoport, T.A., Knospe, S., Behlke, J., Prehn, S., Franke, P., Etzold, G. and Rosenthal, S. 1982. Carp insulin: amino acid sequence, biological activity and structural properties. Eur. J. Biochem. 122: 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Mansour, M., Wright, J.R.J. and Pohajdak, B. 1998. Cloning, sequencing and characterization of the tilapia insulin gene. Comp. Biochem. Physiol. 121B: 291–297.

    CAS  Google Scholar 

  • Mynarcik, D.C., Yu, G.Q. and Whittaker, J. 1996. Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor alpha subunit. J. Biol. Chem. 271: 2439–2442.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T.M., Wright, J.R., Jr., Nielsen, P.F. and Conlon, J.M. 1995. Characterization of the pancreatic hormones from the Brockmann body of the tilapia: Implications for islet xenograft studies. Comp. Biochem. Physiol. 111C: 33–44.

    CAS  Google Scholar 

  • Nichols, R., Lee, T.D. and Andrews, P.C. 1988. Pancreatic proglucagon processing: Isolation and structures of glucagon and glucagon-like peptide from gene I. Endocrinology 123: 2639–2645.

    Article  PubMed  CAS  Google Scholar 

  • Plisetskaya, E.M., Bondareva, V.M., Leonard, J.B.K., Conlon, J.M., Mommsen, T.P. and Silverstein, J.F. 2002. Measurement of channel catfish (Ictalurus punctatus) plasma insulin in species-specific radioimmunoassay. Fish Physiol. Biochem. 25: 71–80.

    Google Scholar 

  • Plisetskaya, E.M., Pollock, H.G., Elliott, W.M., Youson, J.H. and Andrews, P.C. 1988. Isolation and structure of lamprey (Petromyzon marinus) insulin. Gen. Comp. Endocrinol. 69: 46–55.

    Article  PubMed  CAS  Google Scholar 

  • Reid, K.M., Grant, P.T. and Youngson, A. 1968. The sequence of amino acids in insulin isolated from islet tissue of the cod (Gadus callarias). Biochem. J. 110: 289–296.

    PubMed  CAS  Google Scholar 

  • Ronner, P., 1994. Perfusion of pancreatic endocrine tissue of teleost fish. In: Biochemistry and Molecular Biology of Fishes. pp. 179–189. Vol. 3. Edited by Hochachka, P.W., Mommsen, T.P. Analytical Techniques. Elsevier Science, Amsterdam.

    Google Scholar 

  • Schäffer, L. 1994. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221: 1127–1132.

    Article  PubMed  Google Scholar 

  • Silverstein, J.T. and Plisetskaya, E.M. 2000. The effects of NPY and insulin on food intake regulation in fish. Amer. Zool. 40: 296–308.

    Article  CAS  Google Scholar 

  • Silverstein, J.T., Wolters, W.R. and Holland, M. 1999. Evidence of differences in growth and food intake regulation in different genetic strains of channel catfish. J. Fish Biol. 54: 607–615.

    Article  Google Scholar 

  • Smith, L.F. 1966. Species variation in the amino acid sequence of insulin. Am. J. Med. 40: 662–666.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P.F., Mynarcik, D.C., Yu, G.Q. and Whittaker, J. 1995. Mapping of an NH2-terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J. Biol. Chem. 270: 3012–3016.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Kotaki, A., Okuyama, T. and Satake, K. 1960. Studies on insulin. I. Two different insulins from Langerhans islet of bonito fish. J. Biochem. (Tokyo) 48: 84–92.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mommsen, T., Silverstein, J., Plisetskaya, E. et al. Two insulins from channel catfish: purification, structures, receptor-binding and cDNA sequences. Fish Physiology and Biochemistry 25, 61–71 (2001). https://doi.org/10.1023/A:1019708017696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019708017696

  • channel catfish
  • insulin
  • primary structure
  • receptor-binding
  • cDNA
  • Brockmann body
  • alleles