Abstract
Two insulins were isolated from an extract of the Brockmann bodies of channel catfish (Ictalurus punctatus). The primary structure of insulin I is: A-Chain: GIVELCCHKP10 CSLHDLQNYC20 N; B-Chain: GAPQHLCGSH10 LVDALYLVCG20 PNGFFYNPK. Insulin II has three amino-acid substitutions compared with insulin I: A14His to Gln, B1Gly to Val, and B13Asp to Glu. Despite some unusual amino acid substitutions in the catfish insulins compared with human insulin, such as A5Gln to Leu, B21Glu to Pro and B22Arg to Asn, those residues believed to constitute the receptor-binding domain are conserved. Consistent with this, catfish insulins I and II were equipotent in inhibiting the binding of [3-[125I] iodotyrosine-A14] human insulin to the soluble human insulin receptor and were only 3-fold less potent than human insulin in the same assays. An analysis of mRNA expression in Brockmann bodies by reverse-transcriptase PCR identified two proinsulin sequences for the channel catfish containing a single, highly conserved C-peptide whose deduced amino acid sequence is REVDPLLGFL10 PPKSAPEGEL20 AEYPYKEYSE30 LMVKR. PCR of genomic DNA with specific proinsulin primers spanning the intron II interrupting the C-peptide of all vertebrate insulins, produced two introns of 105 and 104 bp, respectively. The nucleotide sequences of the introns differ in 13 positions. Because of the high degree of conservation in insulin and C-peptide and the large variability in the small intron, we conclude that the two insulins isolated are the products of different genes and do not simply represent different alleles. The channel catfish is a diploid species that may have undergone gene or chromosome duplication and therefore we propose that multiple insulin genes may not be restricted to polyploid species such as salmonids or sturgeons.
This is a preview of subscription content, access via your institution.
References
Al-Mahrouki, A.A., Irwin, D.M., Graham, L.C. and Youson, J.H. 2001. Molecular cloning of preproinsulin cDNAs from several osteoglossomorphs and a cyprinid. Mol. Cell Endocrinol. 174: 51–58.
Albert, S.G. 1982. Immunological characterization of catfish (Ictalurus punctatus) insulin and proinsulin. Comp. Biochem. Physiol. 72B: 605–612.
Albert, S.G. and Permutt, M.A. 1979. Proinsulin precursors in catfish pancreatic islets. J. Biol. Chem. 254: 3483–3492.
Andoh, T. and Nagasawa, H. 1998a. Two molecular forms of insulin from barfin flounder, Verasper moseri, are derived from a single gene. Zool. Sci. 15: 931–937.
Andoh, T. and Nagasawa, H. 1998b. Purification and structural determination of insulin, glucagons and somatostatins from stone flounder, Kareius bicoloratus. Zool. Sci. 15: 939–943.
Andoh, T., Nagasawa, H. and Matsubara, T. 2000. Multiple molecular forms of glucagon and insulin in the kaluga sturgeon, Huso dauricus. Peptides 21: 1785–1792.
Andrews, P.C. and Dixon, J.E. 1981. Isolation and structure of a peptide hormone predicted from a mRNA sequence. A second somatostatin from the catfish pancreas. J. Biol. Chem. 256: 8267–8270.
Andrews, P.C., Pubols, M.H., Hermodson, M.A., Sheares, B.T. and Dixon, J.E. 1984. Structure of the 22-residue somatostatin from catfish. An O-glycosylated peptide having multiple forms. J. Biol. Chem. 259: 13267–13272.
Andrews, P.C. and Ronner, P. 1985. Isolation and structures of glucagon and glucagon-like peptide from catfish pancreas. J. Biol. Chem. 260: 3910–3914.
Argenton, F., Zecchin, E. and Bortolussi, M. 1999. Early appearance of pancreatic hormone-expressing cells in the zebrafish embryo. Mech. Dev. 87: 217–221.
Bajaj, M., Blundell, T.L., Pitts, J.E., Wood, S.P., Tatnell, M.A., Falkmer, S., Emdin, S.O., Gowan, L.K., Crow, H., Schwabe, C., Wollmer, A. and Strassburger, W. 1983. Dogfish insulin. Eur. J. Biochem. 135: 535–542.
Baker, E.N., Blundell, T.L., Cutfield, J.F., Cutfield, S.M., Dodson, E.J., Dodson, G.G., Hodgkin, D.M., Hubbard, R.E., Isaacs, N.W. and Reynolds, C.D. 1988. The structure of 2Zn pig insulin crystals at 1.5 A resolution. Philos. Trans. R. Soc. Lond B Biol. Sci. 319: 369–456.
Bray, G.A. 2000. Afferent signals regulating food intake. Proc. Nutr. Soc. 59: 373–384.
Conlon, J.M. 2001. Evolution of the insulin molecule: insights into structure-activity and phylogenetic relationships. Peptides 22: 1183–1193.
Conlon, J.M. and Thim, L. 1986. Primary structure of insulin and a truncated C-peptide from an elasmobranchian fish, Torpedo marmorata. Gen. Comp. Endocrinol. 64: 199–205.
Conlon, J.M, Davis, M.S. and Thim, L. 1987. Primary structure of insulin and glucagon from the flounder (Platichthys flesus). Gen. Comp. Endocrinol. 66: 203–209.
Conlon, J.M., Göke, R., Andrews, P.C. and Thim, L. 1989. Multiple molecular forms of insulin and glucagon-like peptide from the Pacific ratfish (Hydrolagus colliei). Gen. Comp. Endocrinol. 73: 136–146.
Conlon, J.M., Andrews, P.C., Thim, L. and Moon, T.W. 1991. The primary structure of glucagon-like peptide, but not insulin has been conserved between the American eel, Anguilla rostrata and the European eel, Anguilla anguilla. Gen. Comp. Endocrinol. 82: 23–32.
Conlon, J.M., Bondareva, V., Rusakov, Y., Plisetskaya, E.M., Mynarcik, D.C. and Whittaker, J. 1995a. Characterization of insulin, glucagon, and somatostatin from the river lamprey, Lampetra fluviatilis. Gen. Comp. Endocrinol. 100: 96–105.
Conlon, J.M., Nielsen, P.F., Youson, J.H. and Potter, I.C. 1995b. Proinsulin and somatostatin from the islet organ of the southernhemisphere lamprey Geotria australis. Gen. Comp. Endocrinol. 100: 413–422.
Cutfield, J.F., Cutfield, S.M., Carne, A., Emdin, S.O. and Falkmer, S. 1986. The isolation, purification and amino-acid sequence of insulin from the teleost fish Cottus scorpius (daddy sculpin). Eur. J. Biochem. 158: 117–123.
de Lima, J.A., Oliveira, B. and Conlon, J.M. 1999. Purification and characterization of insulin and peptides derived from proglucagon and prosomatostatin from the fruit-eating fish, the pacu Piaractus mesopotamicus. Comp. Biochem. Physiol. 122B: 127–135.
Flatt, P.R. and Bailey, C.J. 1981. Abnormal plasma glucose and insulin responses in heterozygous lean (ob/+) mice. Diabetologia 20: 573–577.
Hahn, V., Winkler, J., Rapoport, T.A., Liebscher, D.H., Coutelle, C. and Rosenthal, S. 1983. Carp preproinsulin cDNA sequence and evolution of insulin genes. Nucl. Acids Res. 11: 4541–4552.
Hobart, P.M., Shen, L.P., Crawford, R., Pictet, R.L. and Rutter, W.J. 1995. Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNA's from cloned cDNA's. Science 210: 1360–1363.
Jørgensen, C. 1960. Electrophoretic properties of two insulin isolated from flounder (Pleuronectes flesus). Acta Endocrinol. (Copenh.) 51 (Suppl.): 1233–1234.
Kavsan, V., Koval, A., Petrenko, O., Roberts, C.T., Jr. and LeRoith, D. 1993. Two insulin genes are present in the salmon genome. Biochem. Biophys. Res. Commun. 191: 1373–1378.
Kristensen, C., Kjeldsen, T., Wiberg, F.C., Schäffer, L., Hach, M., Havelund, S., Bass, J., Steiner, D.F. and Andersen, A.S. 1997. Alanine scanning mutagenesis of insulin. J. Biol. Chem. 272: 12978–12983.
Leibush, B., Lappova, Y., Gutiérrez, J. and Plisetskaya, E.M. 1997. Lamprey but not porcine insulin binds with different affinity to lamprey and rat hepatocytes. Comp. Biochem. Physiol. 116C: 135–139.
Makower, A., Dettmer, R., Rapoport, T.A., Knospe, S., Behlke, J., Prehn, S., Franke, P., Etzold, G. and Rosenthal, S. 1982. Carp insulin: amino acid sequence, biological activity and structural properties. Eur. J. Biochem. 122: 339–345.
Mansour, M., Wright, J.R.J. and Pohajdak, B. 1998. Cloning, sequencing and characterization of the tilapia insulin gene. Comp. Biochem. Physiol. 121B: 291–297.
Mynarcik, D.C., Yu, G.Q. and Whittaker, J. 1996. Alanine-scanning mutagenesis of a C-terminal ligand binding domain of the insulin receptor alpha subunit. J. Biol. Chem. 271: 2439–2442.
Nguyen, T.M., Wright, J.R., Jr., Nielsen, P.F. and Conlon, J.M. 1995. Characterization of the pancreatic hormones from the Brockmann body of the tilapia: Implications for islet xenograft studies. Comp. Biochem. Physiol. 111C: 33–44.
Nichols, R., Lee, T.D. and Andrews, P.C. 1988. Pancreatic proglucagon processing: Isolation and structures of glucagon and glucagon-like peptide from gene I. Endocrinology 123: 2639–2645.
Plisetskaya, E.M., Bondareva, V.M., Leonard, J.B.K., Conlon, J.M., Mommsen, T.P. and Silverstein, J.F. 2002. Measurement of channel catfish (Ictalurus punctatus) plasma insulin in species-specific radioimmunoassay. Fish Physiol. Biochem. 25: 71–80.
Plisetskaya, E.M., Pollock, H.G., Elliott, W.M., Youson, J.H. and Andrews, P.C. 1988. Isolation and structure of lamprey (Petromyzon marinus) insulin. Gen. Comp. Endocrinol. 69: 46–55.
Reid, K.M., Grant, P.T. and Youngson, A. 1968. The sequence of amino acids in insulin isolated from islet tissue of the cod (Gadus callarias). Biochem. J. 110: 289–296.
Ronner, P., 1994. Perfusion of pancreatic endocrine tissue of teleost fish. In: Biochemistry and Molecular Biology of Fishes. pp. 179–189. Vol. 3. Edited by Hochachka, P.W., Mommsen, T.P. Analytical Techniques. Elsevier Science, Amsterdam.
Schäffer, L. 1994. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221: 1127–1132.
Silverstein, J.T. and Plisetskaya, E.M. 2000. The effects of NPY and insulin on food intake regulation in fish. Amer. Zool. 40: 296–308.
Silverstein, J.T., Wolters, W.R. and Holland, M. 1999. Evidence of differences in growth and food intake regulation in different genetic strains of channel catfish. J. Fish Biol. 54: 607–615.
Smith, L.F. 1966. Species variation in the amino acid sequence of insulin. Am. J. Med. 40: 662–666.
Williams, P.F., Mynarcik, D.C., Yu, G.Q. and Whittaker, J. 1995. Mapping of an NH2-terminal ligand binding site of the insulin receptor by alanine scanning mutagenesis. J. Biol. Chem. 270: 3012–3016.
Yamamoto, M., Kotaki, A., Okuyama, T. and Satake, K. 1960. Studies on insulin. I. Two different insulins from Langerhans islet of bonito fish. J. Biochem. (Tokyo) 48: 84–92.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Mommsen, T., Silverstein, J., Plisetskaya, E. et al. Two insulins from channel catfish: purification, structures, receptor-binding and cDNA sequences. Fish Physiology and Biochemistry 25, 61–71 (2001). https://doi.org/10.1023/A:1019708017696
Issue Date:
DOI: https://doi.org/10.1023/A:1019708017696
- channel catfish
- insulin
- primary structure
- receptor-binding
- cDNA
- Brockmann body
- alleles