Skip to main content
Log in

A Review on the various synthesis routes of TiC reinforced ferrous based composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The major thrust underlying the processing of Fe-based composites has been directed towards improving the wear resistance of steel or castiron by incorporating some reinforcing phase, e.g., carbides, oxides, etc. The present article provides a review on the various synthesis routes of TiC reinforced Fe-based composites, i.e., powder metallurgy, conventional melting and casting, carbothermic reduction, combustion synthesis, aluminothermic reduction, electron beam radiation, laser surface melting, and plasma spray synthesis, highlighting the advantages and disadvantages associated with the different routes of synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pagounis, M. Talvitie and V. K. Lindroos, Metall.Mater.Trans.A 27A (1996) 4171.

    Google Scholar 

  2. Idem., ibid. 27A (1996) 4183.

  3. T. Z. Kattamis and T. Suganuma, Mat.Sci.and Technol. A 128 (1990) 241.

    Google Scholar 

  4. J. M. Panchal, T. Vela and T. Rabissch, in “Fabrication of Particulate Reinforced Composites” (ASM International, Materials Park, OH, 1990) p. 245.

    Google Scholar 

  5. J. Kuebarsepp, PhD thesis, Tallin Technical University, Tallin, 1992, p. 8.

    Google Scholar 

  6. E. Pagounis, M. Talvitie and V. K. Lindroos, Powder Metall. 40 (1997) 55.

    Google Scholar 

  7. Y. B. Liu, S. C. Lim, L. Lu and M. O. Lal, in “Metal Matrix Composites” (Woodhead Publishing, Madrid, 1993) p. 770.

    Google Scholar 

  8. B. S. Terry and O. S. Chinymakobvu, J.Mater.Sci. Lett. 10 (1991) 628.

    Google Scholar 

  9. Technical literature from “Chromalloy, ” Metal Tectonics Company Bulletin 54, Sinter Cast Division, Western Highway, West Nyack, New York 10994.

  10. H. Seilstorfer and G. Moser, Metall. 10 (1980) 925.

    Google Scholar 

  11. J. D. Bolton and A. J. Gant, Powder Metall. 40 (1997) 143.

    Google Scholar 

  12. R. K. Galgali, PhD thesis, Indian Institute of Technology, Kharagpur, 1995.

    Google Scholar 

  13. B. S. Terry and O. S. Chinymakobvu, Mat.Sci.and Technol. 8 (1992) 399.

    Google Scholar 

  14. C. Raghunath, M. S. Bhat and P. K. Rohatgi, Scripta Metall. 32 (1995) 577.

    Google Scholar 

  15. S. Skolianos, T. Z. Kattamis, M. Chen and B. V. Chambers, Mat.Sci.and Technol. A 183 (1994) 195.

    Google Scholar 

  16. A. A. Popov and M. M. Gassik, Scripta Materialia 35 (1996) 629.

    Google Scholar 

  17. Z. Liu and H. Fredriksson, Metall.Mater.Trans.A 28A (1997) 471.

    Google Scholar 

  18. Idem., ibid. 28A (1997) 707.

  19. D. R. Gaskell, in “Introduction to Metallurgical Thermodynamics” (McGraw Hill, New York, 1971).

    Google Scholar 

  20. O. Kubaschewski, C. B. Alcock and P. J. Spencer, in “Materials Thermochemistry” (Pergamon Press, Oxford, 1993).

    Google Scholar 

  21. B. S. Terry and O. S. Chinyamakobvu, Mat.Sci.and Technol. 7 (1991) 842.

    Google Scholar 

  22. Y. Chen, Scripta Materialia 36 (1997) 989.

    Google Scholar 

  23. J. B. Holt and Z. A. Munir, J.Mater.Sci. 21 (1986) 251.

    Google Scholar 

  24. J. J. Moore and H. J. Feng, Prog.in Mat.Sci. 39 (1995) 243.

    Google Scholar 

  25. M. J. Capaldi, A. Saidi and J. V. Wood, ISIJ International 37 (1997) 188.

    Google Scholar 

  26. N. Sato and Z. A. Munir, in Proceedings of the Symposium on High Temperature MaterialsV, edited by W. B. Johnson and R. A. Rapp (Electrochemical Society, Pennington, NJ, 1996) Vol. 9–18, p. 99.

    Google Scholar 

  27. K. S. Vecchio, J. C. Lasalvia and M. A. Meyers, Met.Trans.A 23A (1992) 87.

    Google Scholar 

  28. A. Hernandez-Guerrero, Z. Huque and A. M. Kanuary, Combust.Sci.and Tech. 81 (1992) 115.

    Google Scholar 

  29. O. Yamada, Y. Miyamoto and M. Koizumi, J.Amer. Ceram.Soc. 70 (1987) 206.

    Google Scholar 

  30. Y. Choi and S.-W. Rhee, J.Mater.Sci. 28 (1993) 6669.

    Google Scholar 

  31. L. J. Kecskes, T. Kottke and A. Niiler, J.Amer.Ceram Soc. 73(5) (1990) 1274.

    Google Scholar 

  32. H. A. Grebe, A. Advani, N. N. Thadhani and T. Kottke, Met.Trans A 23A (1992) 2365.

    Google Scholar 

  33. S. D. Dunmead, D. W. Readey and C. E. Semler, J.Amer.Ceram.Soc. 72(12) (1989) 2318.

    Google Scholar 

  34. D. C. Halversion, K. H. Ewald and J. A. Munir, J.Mater.Sci. 28 (1993) 4583.

    Google Scholar 

  35. E. Zhang, S. Zeng, B. Yang, Q. Li and M. Ma, Met. Trans.A 36A (1999) 1147.

    Google Scholar 

  36. Idem., ibid. 36A (1999) 1153.

  37. Z. A. Munir and W. Lai, Combust.Sci.& Tech. 88 (1992) 201.

    Google Scholar 

  38. S. C. Deevi, J.Mater.Sci. 26 (1991) 2662.

    Google Scholar 

  39. A. Saidi, A. Chrysanthou, J. V. Wood and J. L. F. Kellie, ibid. 29 (1994) 4993.

    Google Scholar 

  40. Y. Choi and S.-W. Rhee, J.Mater Res. 8 (1993) 3202.

    Google Scholar 

  41. Q. Fan, H. Chai and Z. Jin, J.Mat.Process.Technol. 96 (1999) 102.

    Google Scholar 

  42. J. D. Verohoeven, in “Fundamentals of Physical Metallurgy” (Wiley, New York, 1975) p. 153.

    Google Scholar 

  43. L. L. Wang, Z. A. Munir and Y. M. Maximov, J.Mater.Sci. 28 (1993) 3693.

    Google Scholar 

  44. T. K. Bandyopadhyay and K. Das (unpublished research).

  45. A. F. Baisman, S. B. Vasserman, M. G. Golkovskii, V. D. Kedo and R. A. Sallimov, About Surface hardening by Concentrated Electron Beam at atmosphere, Preprint No. 88-73, Budker Institute of Nuclear Physics, Novosibrsk, Russia, 1988.

    Google Scholar 

  46. D. Suh, S. Lee, S.-J. Kwon and Y. M. Koo, Metall. Trans.A 28A (1997) 1.

    Google Scholar 

  47. S.-J. Kwon, S.-H. Cho and S. Lee, Scripta Materialia 40 (1999) 235.

    Google Scholar 

  48. J. D. Ayers and R. J. Schaefer, in “Laser Application in Material Processing” (Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1979) p. 57.

    Google Scholar 

  49. J. D. Ayers, T. R. Tucker and R. J. Schaefer, in Proceedings of the Rapid Solidification Processing Principles and Technologies, Reston, Virginia, March 1980, edited by M. Cohen, B. Kear and R. Mehrabian (Claiton's Publishing Division, Baton Rouge, Louisiana).

  50. J. D. Ayers and T. R. Tucker, Thin Solid Films 73 (1980) 201.

    Google Scholar 

  51. W. Ceri, R. Martinella, G. P. Mor, P. Bianchi and D. D. Angelo, Surf.Coat.Technol. 49 (1991) 40.

    Google Scholar 

  52. S. Ariely, J. Shen, M. Bamberger, F. D. Dansigh and H. Hugel, ibid. 45 (1991) 403.

    Google Scholar 

  53. A. Y. Fasasi, M. Pons, C. Tassin and A. Galerie, J.Mater.Sci. 29 (1994) 5121.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, K., Bandyopadhyay, T.K. & Das, S. A Review on the various synthesis routes of TiC reinforced ferrous based composites. Journal of Materials Science 37, 3881–3892 (2002). https://doi.org/10.1023/A:1019699205003

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019699205003

Keywords

Navigation