Skip to main content
Log in

Microstructure and tensile properties of BN/SiC coated Hi-Nicalon, and Sylramic SiC fiber preforms

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Batch to batch and within batch variations, and the influence of fiber architecture on room temperature physical and tensile properties of BN/SiC coated Hi-Nicalon and Sylramic SiC fiber preform specimens were determined. The three fiber architectures studied were plain weave (PW), 5-harness satin (5HS), and 8-harness satin (8HS). Results indicate that the physical properties vary up to 10 percent within a batch, and up to 20 percent between batches of preforms. Load-reload (Hysteresis) and acoustic emission methods were used to analyze damage accumulation occurring during tensile loading. Early acoustic emission activity, before observable hysteretic behavior, indicates that the damage starts with the formation of nonbridged tunnel cracks. These cracks then propagate and intersect the load bearing “0°” fibers giving rise to hysteretic behavior. For the Hi-Nicalon preform specimens, the onset of “°” bundle cracking stress and strain appeared to be independent of the fiber architecture. Also, the “0°” fiber bundle cracking strain remained nearly the same for the preform specimens of both fiber types. TEM analysis indicates that the CVI BN interface coating is mostly amorphous and contains carbon and oxygen impurities, and the CVI SiC coating is crystalline. No reaction exists between the CVI BN and SiC coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Johnson, B. J. Bartlett and W. A. Troha, in Proceedings of the 13th International Symposium on Air Breathing Engines, Chattanooga, Tennessee, U.S.A., 1997, Vol. II, edited by S. Billing, ISABE 97–7179, p. 1321.

  2. D. Brewer, Mat.Sci.and Eng. A 261 (1999) 284.

    Google Scholar 

  3. S. K. Lau, S. J. Calandra and R. W. Ohnsorg, US Patent no. 5,840,221 (1998).

  4. J. P. Benedict, S. J. Klepeis and R. Anderson, in Proceedings: Microscopy and Microanalysis, Cleveland, Ohio (August 1997), Vol. 3. Part 2 (Springer-Verlag, New York) 339.

  5. M. Takeda, Y. Imai, H. Ichikawa, T. Ishikawa, N. Kasai, T. Seguchi and K. Okamura, Ceram.Eng. Sci.Pro. 12 (1991) 1007.

    Google Scholar 

  6. J. Lipowitz, J. A. Rabe, A. Zangvil and Y. Xu, ibid.18 (1997) 147.

    Google Scholar 

  7. Engineering Property Data on Selected Ceramics Vol. 1, Nitrides, Report# MCIC-HB-07, Metals and Ceramics Information Center Battelle Institute, Columbus, OH (1976).

  8. J. S. Goela, M. A. Pickering, R. L. Taylor, B. W. Murray and A. Lompado, Appl.Opt. 30 (1991) 3166.

    Google Scholar 

  9. W. J. Lacyey and T. L. Starr, in “Fiber-Reinforced Ceramic Composites: Materials, Processing, and Technology, ” edited by K. S. Mazdiyasni (Noyes Publications, Park Ridge, NJ, USA, 1990) p. 347.

    Google Scholar 

  10. P. J. Geoghegan, in “Flight-Vehicle Materials, Structure and Dynamics-Assessment and Future Directions, ” edited by A. H. Noor and S. L. Venneri (The American Society of Mechanical Engineers, New York, 1992) p. 113.

    Google Scholar 

  11. G. N. Morscher, J. Z. Gyekenyesi and R. T. Bhatt, in “Mechanical, Thermal, and Environmental Properties and Performance of Ceramic Composites and Components, ” ASTM STP 1392, edited by M. G. Jenkins, E. Lara-Curzio and S. T. Gonczy (American Society for Testing and Materials, West Conshohocken, PA, 2000) p. 306.

    Google Scholar 

  12. G. N. Morscher and J. Z. Gyekenesi, Ceram.Eng.Sci. Proc. 19(3) (1998) 241.

    Google Scholar 

  13. G. N. Morscher, Comp.Sci.Tech. 59(5) (1999) 687.

    Google Scholar 

  14. R. Y. Kim and N. J. Pagano, J.Amer.Ceram.Soc. 74(5) (1991) 1082.

    Google Scholar 

  15. Y-J. Luo, S. C. Chang and I. M. Daniel, J.Comp.Mat. 29 (1995) 1946.

    Google Scholar 

  16. B. N. Cox and D. B. Marshall, J.Amer.Ceram.Soc. 79(5) (1996) 1181.

    Google Scholar 

  17. M. G. Jenkins, J. P. Piccola and E. Lara-Curzio, in “Fracture Mechanics of Ceramics, ” Vol. 12, edited by R. C. Bradt, D. P. H. Hasselman, D. Munz, M. Sakai and V. Y. Shevchenko (Plenum, New York, 1996) p. 267.

    Google Scholar 

  18. G. N. Morscher, in “Review of Progress in Quantitative Nondestructive Evaluation, ” Vol. 19, edited by D. O. Thompson and D. E. Chimenti (Kluwer Academic/Plenum Publishers) 19A (2000) p. 283.

  19. L. Gulliaumat, Microfissuration des CMC: Relation avec la Microstructure et le Comportement Mecanique, Doctoral thesis Universite de Bordeaux I, 1994.

  20. L. Gulliaumat and J. Lamon, Comp.Sci.Tech. 56 (1996) 803.

    Google Scholar 

  21. P. Pluvinage, A. Parvizi-Majidi and T. W. Chou, J.Mater.Sci. 31 (1996) 232.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, R.T., Chen, Y.L. & Morscher, G.N. Microstructure and tensile properties of BN/SiC coated Hi-Nicalon, and Sylramic SiC fiber preforms. Journal of Materials Science 37, 3991–3998 (2002). https://doi.org/10.1023/A:1019692514089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019692514089

Keywords

Navigation