Skip to main content
Log in

Electrode characteristics of Li2Ti3O7-ramsdellite processed by mechanical grinding

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of mechanical grinding on the electrochemical properties of Li2Ti3O7 regarding lithium insertion is studied. X-ray diffraction experiments of milling compounds showed a progressively amorphization of the crystalline material due to both crystalline size decreasing and internal strain increasing. These structural modifications are reflected in the electrochemical behavior of Li2Ti3O7, when it is used as the positive electrode in lithium cells. As a function of milling time a higher specific capacity is obtained during the first discharge of the cell, but when charging an increasing in the irreversible capacity is observed. The most promising Li2Ti3O7 based electrode has been achieved, under our experimental conditions, for 13 hours milling that produces a compound with crystallite size of approximately 20 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Arroyo Y De Dompablo, E. MorÁn, A. VÁrez and F. GarcÍa-Alvarado, Mater. Res. Bull. 32(8) (1997) 993.

    Google Scholar 

  2. S. Garnier, C. Bohnke, O. Bohnke and J. L. Fourquet, Solid Stat. Ionics 83 (1996) 323.

    Google Scholar 

  3. C. J. Chen and M. Greenblatt, Mater. Res. Bull 20 (1985) 1374.

    Google Scholar 

  4. M. Y. Song, E. Ivanov, B. Darriet, M. Pezat and P. Hagenmuller, Int. J. Hydrogen Energy 10 (1985) 169.

    Google Scholar 

  5. P. Zolliker, K. Yvon, P. Fisher and J. Schefer, Inorg. Chem. 24 (1985) 4177.

    Google Scholar 

  6. K. Aoki, H. Aoyagi, A. Memezawa and T. Masumoto, J. Alloys and Comp. 203 (1994) L7.

    Google Scholar 

  7. S. Orimo and H. Fujii, ibid. 232 (1996) L16.

    Google Scholar 

  8. J.-L. Bobet, S. Pechev, B. Chevalier and B. Darriet, ibid. 267 (1/2) (1998) 136.

    Google Scholar 

  9. F. Disma, L. Aymard, L. Dupont and J. M. Tarascon, J. Electrochem. Soc. 143 (1996) 3959.

    Google Scholar 

  10. R. Palacin, G. Rousse, M. Morcrette, L. Dupont, C. Masquelier, Y. Chabre and J. M. Tarascon, in Proceedings of the 10th International Meeting on Lithium Batteries, Como, Italy, 2000.

  11. P. Lebrun, L. Froyen and L. Delay, Mater. Sci. Eng. A161 (1993) 75.

    Google Scholar 

  12. J. RodrÍguez-Carvajal, “Fullprof: A Program for Rietveld Refinement and Pattern Matching Analysis” Vers. 0.2 (1998); Idem., Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Tolouse, France, 1990) p. 117.

  13. G. K. Williamsom and W. H. Hall, Acta Metall. 1 (1953) 22.

    Google Scholar 

  14. L. Lutterotti, Maud Program. V. 1.63, Univer. Trento, 2000.

    Google Scholar 

  15. J. M. Tarascon, J. Electrochem. Soc. 132 (1985) 2089.

    Google Scholar 

  16. C. Mouget and Y. Chabre, Multichannel Potentiostatic and galvanostatic System Macpile, licensed by CNRS and UJF grenoble to Bio-Logic Corp., 1 Avenue de l'Europe, F-38640 Claix, 1991.

  17. B. Morosin and J. C. Mikkelsen, Acta Crystallogr. B 35 (1979) 798.

    Google Scholar 

  18. M. E. Rabanal, A. VÁrez, B. Levenfeld and J. M. Torralba, J. Alloys and Compounds, submitted.

  19. M. ZdÚjic, C. Jovalekic, L. J. Karanovic, M. Mitric, D. Poleti and D. Skala, Mat. Scienc. & Engineer. A 245 (1998) 109.

    Google Scholar 

  20. B. D. Cullity, in “Elements of X-Ray Diffraction” (Addison-Wesley, Reading, MA, 1978) p. 284.

    Google Scholar 

  21. A. Benghalem and D. G. Morris, Acta Metall. Mater 42(12) (1994) 4071.

    Google Scholar 

  22. C. C. Koch, Nanostruct. Mater. 2 (1993) 109.

    Google Scholar 

  23. E. Hellstern, H. J. Fecht, Z. Fu and W. L. Johnson, J. Appl. Phys. 65 (1989) 305.

    Google Scholar 

  24. A. Bose in “Advances in Particulate Materials” (Butterworth-Heineman, 1995) p. 162.

  25. R. Tossici, R. Marassi, M. Berrettoni, S. Stizza and G. Pistoia, Solid Stat. Ionics 67 (1993) 77.

    Google Scholar 

  26. K. Cheng and M. S. Whittingham, ibid. 1 (1980) 151.

    Google Scholar 

  27. O. Bohnke and G. Robert, ibid. 6 (1982) 115.

    Google Scholar 

  28. C. Julien and G. Nazri in “Solid State Batteries:Materials Design and Optimization” (Kluwer Academic Publisher, Boston, MA, 1994).

    Google Scholar 

  29. R. Tossici, R. Marassi, M. Berrettoni, S. Stizza and G. Pistoia, Solid Stat. Ionics 57 (1992) 227.

    Google Scholar 

  30. T. Zheng, J. N. Reimers and J. R. Dahn, Phys. Rev. B 51 (1995) 734.

    Google Scholar 

  31. T. MÜtschele and R. Kirchheim, Scr. Metall. 21 (1987) 1101.

    Google Scholar 

  32. S. Orimo, H. Fujii and K. Ikeda, Acta Mater. 45(1) (1997) 331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dompablo, M.E.A.Y.D., GarcíA, J., Várez, A. et al. Electrode characteristics of Li2Ti3O7-ramsdellite processed by mechanical grinding. Journal of Materials Science 37, 3981–3986 (2002). https://doi.org/10.1023/A:1019688413180

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019688413180

Keywords

Navigation