Skip to main content
Log in

Properties of GaAs nanoclusters deposited by a femtosecond laser

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The properties of femtosecond pulsed laser deposited GaAs nanoclusters were investigated. Nanoclusters of GaAs were produced by laser ablating a single crystal GaAs target in vacuum or Ar gas. Atomic force and transmission electron microscopies showed that most of the clusters were spherical and ranged in diameter from 1 nm to 50 nm, with a peak size distribution between 5 nm and 9 nm, depending on the Ar gas pressure or laser fluence. X-ray diffraction, solid-state nuclear magnetic resonance, Auger electron spectroscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy revealed that these nanoclusters were randomly oriented GaAs crystallites. An oxide outer shell of ∼2 nm developed subsequently on the surfaces of the nanocrystals as a result of transportation in air. Unpassivated GaAs nanoclusters exhibited no detectable photoluminescence. After surface passivation, these nanoclusters displayed photoluminescence energies less than that of bulk GaAs from which they were made. Our photoluminescence experiments suggest an abundance of sub-band gap surface states in these GaAs nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Weisbuch and B. Vinter, “Quantum Semiconductor Structures” (Academic Press, San Diego, CA, 1991).

    Google Scholar 

  2. U. Woggon, “Optical Properties of Semiconductor Quantum Dots” (Springer-Verlag, Berlin, 1997).

    Google Scholar 

  3. D. B. Chrisey and G. K. Hubler, “Pulsed Laser Deposition of Thin Films” (John Wiley & Sons, New York, 1994).

    Google Scholar 

  4. M. Okigawa, T. Nakayama, K. Takayama and N. Itoh, Solid State Commun. 49 (1984) 347.

    Google Scholar 

  5. K. Ichige, Y. Matsumoto and A. Namiki, Nucl.Instrum. Methods B 33 (1988) 820.

    Google Scholar 

  6. C. Garcia, J. Ramos, A. C. Prieto, J. Jimenez, C. Geertsen, J. L. Lacour and P. Mauchien, Appl. Surf.Sci. 96–98 (1996) 370.

    Google Scholar 

  7. V. Craciun and D. Craciun, ibid. 109/110 (1997) 312.

    Google Scholar 

  8. A. Okano, J. Kanasaki, Y. Nakai and N. Itoh, J.Phys.: Condens.Matter. 6 (1994) 2697.

    Google Scholar 

  9. L. Wang, K. W. D. Ledingham, C. J. MClean and R. P. Singhal, Appl.Phys. B 54 (1992) 71.

    Google Scholar 

  10. L. N. Dinh, S. Hayes, C. K. Saw, W. MClean II, M. Balooch and J. A. Reimer, APL 75 (1999) 2208.

    Google Scholar 

  11. V. I. Srdanov, I. Alxneit, G. D. Stucky, C. M. Reaves and S. P. Denbaars, J.Phys.Chem. B 102 (1998) 3341.

    Google Scholar 

  12. D. I. Lubyshev, J. C. Rossi, G. M. Gusev and P. Basmaji, J.Cryst.Growth 132 (1993) 533.

    Google Scholar 

  13. Y. Nomura, Y. Morishita, S. Goto and Y. Katayama, J.Electron.Mater. 23 (1994) 97.

    Google Scholar 

  14. K. Himura, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi and H. Kakibayashi, J.Appl.Phys. 77 (1995) 447.

    Google Scholar 

  15. Ju. R. Ro, S. B. Kim, K. W. Park, E. H. Lee and J. Lee, J.Cryst.Growth 202 (1999) 1198.

    Google Scholar 

  16. F. Nakajima, J. Motohisa and T. Fukui, Appl.Surf. Sci. 162 (2000) 650.

    Google Scholar 

  17. J. Hirose, I. Suemune, A. Ueta, H. Machida and N. Shimoyama, J.Cryst.Growth 214 (2000) 524.

    Google Scholar 

  18. Home built amplification system using a Coherent, Mira 900 oscillator.

  19. The wafer was bought from American Xtal Technology, doped with Zn at a concentration ~1019/cm3.

  20. P. Markiewicz and M. C. Goh, Langmuirs 10 (1994) 5.

    Google Scholar 

  21. L. N. Dinh, Kyle. D. Frischknecht, M. A. Schildbach, T. Anklam and W. McLean II, J.Vac. Sci.Technol. A 17 (1999) 3397.

    Google Scholar 

  22. L. N. Dinh, M. A. Schildbach, M. Balooch and W. MClean II, J.Appl.Phys. 86 (1999) 1149.

    Google Scholar 

  23. D. A. Allwood, R. T. Carline, N. J. Mason, C. Pickering, B. K. Tanner and P. J. Walker, Thin Solid Films 364 (2000) 33.

    Google Scholar 

  24. M. Yamada and Y. Ide, Jpn.J.Appl.Phys. 33 (1994) L-671.

    Google Scholar 

  25. T. Van Buuren, M. K. Weilmeier, I. Athwal, K. M. Colbow, J. A. MC kenzie, T. Tiedje, P. C. Wong and K. A. R. Mitchel, Appl.Phys.Letts 59 (1991) 464.

    Google Scholar 

  26. GM32 series from Intelite, Inc.

  27. L. N. Dinh, L. L. Chase, M. Balooch, F. Wooten and W. J. Siekhaus, Phys.Rev. B 54 (1996) 5029.

    Google Scholar 

  28. C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff and R. Bhat, Appl.Phys.Lett. 51 (1987) 33.

    Google Scholar 

  29. C. J. Sandroff, J. P. Harbison, R. Ramesh, M. J. Andrejco, M. S. Hegde, D. M. Hwang, C. C. Chang and E. M. Vogel, Science 245 (1989) 391.

    Google Scholar 

  30. A. J. Nozik, H. Uchida, P. V. Kamat and C. Curtis, Israel J.Chem. 33 (1993) 15.

    Google Scholar 

  31. M. V. Ramakrishna and R. A. Friesner, ibid. 33 (1993) 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinh, L.N., Hayes, S.E., Wynne, A.E. et al. Properties of GaAs nanoclusters deposited by a femtosecond laser. Journal of Materials Science 37, 3953–3958 (2002). https://doi.org/10.1023/A:1019680111363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019680111363

Keywords

Navigation