Skip to main content
Log in

Comparison of Calculated and Experimental Data on Supersonic Flow past a Circular Cylinder

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The supersonic perfect-gas flow past a circular cylinder is studied on the basis of a numerical analysis of the time-dependent two-dimensional Reynolds equations using a differential q–ω turbulence model with reference to the experimental conditions. The calculations are carried out at Reynolds and Mach numbers Re=2× 105 and M=1.1, 1.3, and 1.7 and the experimental investigations at Re=1.62×105–2×105 and Mach numbers on the interval 0.7 ≤ M ≤ 1.7. The calculated and experimental data on the pressure coefficient distribution over the cylinder surface, the location of the separation point on the surface, and the pressure drag coefficient are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Matt, #x201C;Hochgeschwindigkeitsmessungen an Rund-und Profilstangen verschiedener urchmesser,” Vortrag am 29.101942 zur Hochgeschwindigkeitstagung Berlin.

  2. H. Matt, “Luftwiderstandsmessungen an Rundstangen verschiedener Durchmesser bei hohen Unterschallgeschwindigkeiten,” Deutsche Luftfahrtforschung. Forschungsbericht No. 1825, S. 33 (1943).

    Google Scholar 

  3. H. Pfeifer, “Strömungsuntersuchungen an Kreiszylindern bei hohen Geschwindigkeiten,” Forschungsberichte des Landes Nordrhein-Westfalen, No. 1062 (1962).

  4. V. A. Bashkin, I. V. Egorov, and D. V. Ivanov, “Application of Newton's method to calculation of internal supersonic separated flow,” Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 30 (1997).

    Google Scholar 

  5. I. Yu. Babaev, V. A. Bashkin, and I. V. Egorov, “Numerical solution of Navier-Stokes equations using iteration techniques of the variational type,” Zh. Vychisl. Mat. i Matem. Fiz., 34, 1693 (1994).

    Google Scholar 

  6. V. A. Bashkin, I. V. Egorov, M. V. Egorova, and D. V. Ivanov, “Supersonic laminar-turbulent gas flow past a circular cylinder,” Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 31 (2000).

    Google Scholar 

  7. V. A. Bashkin, I. V. Egorov, M. V. Egorova, and D. V. Ivanov, “Development of the flowfield structure in the neighborhood of a circular cylinder in the presence of laminar-turbulent transition,” Teplofizika Vysokikh Temperatur, 38, 759 (2000).

    Google Scholar 

  8. P. G. Huang and T. J. Coakley, “Turbulence modeling for high speed flows,” AIAA Paper, No. 92-0436 (1993).

  9. S. K. Godunov, “A finite-difference method for the numerical calculation of discontinuous solutions of the hydrodynamic equations,” Mat. Sborn., 47, 271 (1959).

    Google Scholar 

  10. P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes,” J. Comput. Phys., 43, 357 (1981).

    Google Scholar 

  11. V. P. Kolgan, “Application of the minimum derivative principle to the construction of finite-difference schemes for calculating discontinuous solutions of gas dynamics,” Uch. Zap. TsAGI, 3, No. 6, 68 (1972).

    Google Scholar 

  12. C.-C. Chang and S.-Y. Ley, “On the sources of aerodynamic forces: steady flow around a cylinder or a sphere,” Proc. Roy. Soc. London. Ser A, 452, No. 1954, 2369 (1996).

    Google Scholar 

  13. Czajkowski, “Russian Aeronautical Test Facilities,” Anser Center for International Aerospace Cooperation, Suite 800, Jefferson Davis Highway, Arlington, Va 22202-3251 (1994).

    Google Scholar 

  14. N. G. Lapina and V. A. Bashkin, “Experimental investigation of the flow pattern and heat transfer in the neighborhood of the spreading line in transverse supersonic flow past a circular cylinder at the numbers M = 3, 5, and 6,” Tr, TsAGI, No. 2203, 44 (1983).

    Google Scholar 

  15. L. H. Jorgensen, “Estimation of aerodynamics for space slender bodies alone and with lifting surfaces at a's from 0 deg to 90 deg,” AIAA Journal, 11, 409 (1973).

    Google Scholar 

  16. V. S. Murthy and W. C. Rose, “Detailed measurements of the aerodynamic characteristics of a circular cylinder in transverse flow,” AIAA Journal, 16, No. 6, 8 (1978).

    Google Scholar 

  17. V. S. Murthy and W. C. Rose, “Form drag, skin friction, and vortex shedding frequencies for subsonic and transonic gross flow on circular cylinder,” AIAA Paper, No. 77-687 (1977).

  18. J. M. Macha, “Drag of circular cylinders at transonic Mach numbers,” J. Aircraft, 14, 605 (1977).

    Google Scholar 

  19. F. E. Gowen and E. W. Perkins, “Drag of circular cylinders for a wide range of Reynolds numbers and Mach numbers,” NACA Techn. Note, No. 2960 (1953).

  20. A. Ferri, “Influenza del Numero di Reynolds ai Grandi Numeri di Mach,” Atti di Guidonia, No. 67-68-69, 49 (1942). (1942).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashkin, V.A., Vaganov, A.V., Egorov, I.V. et al. Comparison of Calculated and Experimental Data on Supersonic Flow past a Circular Cylinder. Fluid Dynamics 37, 473–483 (2002). https://doi.org/10.1023/A:1019675027402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019675027402

Keywords

Navigation