Skip to main content
Log in

A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

As in many ecosystems, carbon (C) cycling in arctic and boreal regions is tightly linked to the cycling of nutrients: nutrients (particularly nitrogen) are mineralized through the process of organic matter decomposition (C mineralization), and nutrient availability strongly constrains ecosystem C gain through primary production. This link between C and nutrient cycles has implications for how northern systems will respond to future climate warming and whether feedbacks to rising concentrations of atmospheric CO2 from these regions will be positive or negative. Warming is expected to cause a substantial release of C to the atmosphere because of increased decomposition of the large amounts of organic C present in high-latitude soils (a positive feedback to climate warming). However, increased nutrient mineralization associated with this decomposition is expected to stimulate primary production and ecosystem C gain, offsetting or even exceeding C lost through decomposition (a negative feedback to climate warming). Increased primary production with warming is consistent with results of numerous experiments showing increased plant growth with nutrient enrichment. Here we examine key assumptions behind this scenario: (1) temperature is a primary control of decomposition in northern regions, (2) increased decomposition and associated nutrient release are tightly coupled to plant nutrient uptake, and (3) short-term manipulations of temperature and nutrient availability accurately predict long-term responses to climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg B 2000 Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 133, 13-22.

    Google Scholar 

  • Berg B and Matzner E 1997 Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ. Rev. 5, 1-25.

    Google Scholar 

  • Billings W D, Luken J O, Mortensen D A and Peterson K M 1982 Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53, 7-11.

    Google Scholar 

  • Binkley D, Smith F W and Son Y 1995 Nutrient supply and declines in leaf area and production in lodgepole pine. Can. J. For. Res. 25, 621-628.

    Google Scholar 

  • Bliss L C 1988 Arctic tundra and polar desert biome. In North American Terrestrial Vegetation. Eds. M G Barbour and D W Billings. pp 1-32. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bliss L C, Heal O W and Moore J J Ed 1981 Tundra ecosystems. A comparative analysis. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bret-Harte M S, Shaver G R, Zoerner J P, Johnstone J F, Wagner J L, Charez A S, Gunkelman R F, VI, Lippert S C, Laundre J A 2001 Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18-32.

    Google Scholar 

  • Bridgham S D, Updegraff K and J Pastor 1998 Carbon, nitrogen and phosphorus mineralization in northern wetlands. Ecology 79, 1545-1561.

    Google Scholar 

  • Chapin D M and Bledsoe C S 1992 Nitrogen fixation in arctic plant communities. In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective. Ed. F S Chapin, III, R L Jefferies, J F Reynolds, G R Shaver, and J Svoboda. pp 301-320. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Chapin F S III 1980 The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11, 233-260.

    Google Scholar 

  • Chapin F S, III, Miller P C, Billings W D and Coyne P I 1980 Carbon and nutrient budgets and their control in coastal tundra. In An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Eds. J Brown, P C Miller, L L Tieszen and F L bunnell. pp 458-483. Dowden, Hutchinson, & Ross, Stroudsburg, PA.

    Google Scholar 

  • Chapin F S, III, Moilanen L and Kielland K 1993 Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361, 150-153.

    Google Scholar 

  • Chapin F S, III and Shaver G R 1996 Physiological and growth responses of arctic plants to a field experiment simulating climatic change. Ecology 77, 822-840.

    Google Scholar 

  • Chapin F S, III, Shaver G R, Giblin A E, Nadelhoffer K J and Laundre J A 1995 Response of arctic tundra to experimental and observed changes in climate, Ecology 76, 694-711.

    Google Scholar 

  • Chapin F S, III, Vitousek P M and Van Cleve K 1986 The nature of nutrient limitation in plant communities. Am. Nat. 127, 48-58.

    Google Scholar 

  • Elliot-Fisk D L 1988 The boreal forest. In North American Terrestrial Vegetation. Eds. M G Barbour and D W Billings. pp Cambridge University Press, Cambridge UK.

    Google Scholar 

  • Fahnestock J T, Jones M H and Welker J M 1999 Wintertime CO2 efflux from arctic soils: Implications for annual carbon budgets. Global Biogeochem. Cyc. 13, 775-779.

    Google Scholar 

  • Giblin A E, Nadelhoffer K J, Shaver G R, Laundre J A and McKerrow A J 1991 Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol. Monogr. 61, 415-435.

    Google Scholar 

  • Gorham E 1991 Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182-195.

    Google Scholar 

  • Goulden M L, Wofsy S C, Harden J W, Trumbore S E, Crill P M, Gower S T, Fries T, Daube B C, Fan S-M, Sutton D J, Bazzaz A and Munger J W 1998 Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214-217.

    Google Scholar 

  • Grogan P and Chapin F S III 1999 Arctic soil respiration: effects of climate and vegetation depend on season. Ecosystems 2, 451-459.

    Google Scholar 

  • Hallbäcken L and Zhang L H Q 1998 Effects of experimental acidification, nitrogen addition and liming on ground vegetation in a mature stand of Norway spruce (Picea abies (L.) Karst.) in SE Sweden. For. Ecol. Manage. 108, 203-215.

    Google Scholar 

  • Harden J, O'Neill K P, Trumbore S E, Velduis H and Stocks B J 1997 Moss and soil contributions to the annual net carbon flux in a maturing boreal forest. J. Geophys. Res. Atmos. 102, 817-828.

    Google Scholar 

  • Hobbie S E 1996 Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66, 503-522.

    Google Scholar 

  • Hobbie S E 1999 Arctic ecology. In Handbook of Functional Plant Ecology. Eds. F I Pugnaire and F Vallardes. pp 473-493. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Hobbie S E, Schimel J P, Trumbore S E and Randerson J R 2000 A mechanistic understanding of carbon storage and turnover in high-latitude soils. Global Change Biol. 6, 196-210.

    Google Scholar 

  • Högberg P, Johannisson C, Nicklasson H and Högbom L 1990 Shoot nitrate reductase activity of field-layer species in different forest types. Scandinavian J. For. Res. 5, 449-456.

    Google Scholar 

  • Hogg P, Squires P and Fitter A H 1995 Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biol. Conserv. 71, 143-153.

    Google Scholar 

  • Illeris L and Jonasson S 1999 Soil and plant CO2 emission in response to variations in soil moisture and temperature and to amendment with nitrogen, phosphorus and carbon in northern Scandinavia. Arctic and Alpine Res. 31, 264-271.

    Google Scholar 

  • Jefferies R L and Bryant J P 1995 The plant-vertebrate herbivore interface in arctic ecosystems. In Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences. Eds. F S Chapin, III and C Körner. pp 271-281. Springer-Verlag, Berlin.

    Google Scholar 

  • Jefferies R L, Svoboda J, Henry G, Raillard M and Ruess R 1992 Tundra grazing systems and climatic change. In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective. Eds. F S Chapin, III, R L Jefferies, J F Reynolds, G R Shaver and J Svoboda. pp 391-412. Academic Press, San Diego.

    Google Scholar 

  • Jonasson S, Havström M, Jensen M and Callaghan T V 1993 In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia 95, 179-186.

    Google Scholar 

  • Jonasson S, Michelsen A, Schmidt I K, Nielsen E V and Callaghan T V 1996 Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: Implications for plant nutrient uptake. Oecologia 106, 507-515.

    Google Scholar 

  • Kasischke E S, Christensen N L, Jr. and Stocks B J 1995 Fire, global warming, and the carbon balance of boreal forests. Ecol. Appl. 5, 437-451.

    Google Scholar 

  • Kielland K 1994 Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75, 2373-2383.

    Google Scholar 

  • Lachenbruch A H and Marshall B V 1986 Climate change: geothermal evidence from permafrost in the Alaskan arctic. Science 234, 689-696.

    Google Scholar 

  • Larsen J A 1980 The Boreal Ecosystem Academic Press, London UK. 500 p.

    Google Scholar 

  • Likens G E, Driscoll C T, Buso D C, Siccama T G, Johnson C E, Lovett G M, Fahey T J, Reiners WA, Ryan D F, Martin C W and Bailey S W 1998 The biogeochemistry of calcium at Hubbard Brook. Biogeochemistry 41, 89-173.

    Google Scholar 

  • Mäkipää R 1995 Effect of nitrogen input on carbon accumulation of boreal forest soils and ground vegetation. For. Ecol. Manage. 79, 217-226.

    Google Scholar 

  • Marion G M and Black C H 1986 The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci. Soc. Am. J. 51, 1501-1508.

    Google Scholar 

  • McGill W B and Cole C V 1981 Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26, 267-286.

    Google Scholar 

  • McKane R B, Rastetter E B, Shaver G R, Nadelhoffer K J, Giblin A E, Laundre J A and Chapin F S, III 1997a Reconstruction and analysis of historical changes in carbon storage in arctic tundra. Ecology 78, 1188-1198.

    Google Scholar 

  • McKane R B, Rastetter E B, Shaver G R, Nadelhoffer K J, Giblin A E, Laundre J A and Chapin F S III 1997b Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology 78, 1170-1187.

    Google Scholar 

  • Nadelhoffer K J, Giblin A E, Shaver G R and Laundre J A 1991 Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72, 242-253.

    Google Scholar 

  • Nadelhoffer K J, Giblin A E, Shaver G R and Linkins A E 1992 Microbial processes and plant nutrient availability in arctic soils In Arctic Ecosystems in a Changing Climate: An Ecophysiological Perspective. Ed. F S Chapin, III, R L Jefferies, J F Reynolds, G R Shaver and J Svoboda. pp 281-300. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M and Högberg P 1998 Boreal forest plants take up organic nitrogen. Nature 392, 914-916.

    Google Scholar 

  • Nohrstedt H-Ö 1985 Nonsymbiotic nitrogen fixation in the topsoil of some forest stands in central Sweden. Can. J. For. Res. 15, 715-722.

    Google Scholar 

  • Nordin A, Högberg P and Näsholm T 2001 Soil N form availability and plant N uptake along a boreal forest productivity gradient. Oecologia 129, in press.

  • Oechel W C, Vourlitis G L and Hastings S J 1997 Cold season CO2 emission from arctic soils Global Biogeochem. Cycl. 11, 163-172.

    Google Scholar 

  • Oechel W C, Vourlitis G L, Hastings S J, Ault R P, Jr and Bryant P 1998 The effects of water and elevated temperature on the net CO2 flux of wet sedge tundra ecosytems. Global Change Biol. 4, 77-90.

    Google Scholar 

  • Pastor J, Dewey B, Naiman R J, McInnes P F and Cohen Y 1993 Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology 74, 467-480.

    Google Scholar 

  • Pastor J, Gardner R H, Dale V H and Post W M 1987 Successional changes in nitrogen availability as a potential factor contributing to spruce declines in boreal North America. Can. J. For. Res. 17, 1394-1400.

    Google Scholar 

  • Peterson B J, Corliss T L, Kriet K and Hobbie J E 1992 Nitrogen and phosphorus concentrations and export for the upper Kuparuk River on the North Slope of Alaska in 1980 Hydrobiologia 240, 61-69.

    Google Scholar 

  • Ping C L, Michaelson J and Kimble J M 1997 Carbon storage along a latitudinal transect in Alaska. Nutr. Cycl. Agroecosyst. 49, 235-242.

    Google Scholar 

  • Post E, Peterson R O, Stenseth N C and McLaren B E 1999 Ecosystem consequences of wolf behavioral response to climate Nature 401, 905-907.

    Google Scholar 

  • Post W M 1990 Report of a workshop on climate feedbacks and the role of peatlands, tundra and boreal ecosystems in the global carbon cycle. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

    Google Scholar 

  • Post W M, Emanuel W R, Zinke P J and Stangenberger A G 1982 Soil carbon pools and world life zones. Nature 298, 156-159.

    Google Scholar 

  • Rastetter E B, McKane R B, Shaver G R, Nadelhoffer K J and Giblin A E 1997 Analysis of CO2, temperature, and moisture effects on carbon storage in Alaskan arctic tundra using a general ecosystem model. In Global Change and Arctic Terrestrial Ecosytems. Eds. W C Oechel, T Callaghan, T Gilmanov, J I Holten, B Maxwell, UMolau and B Sveinbjörnsson. pp 437-451. Springer, New York.

    Google Scholar 

  • Rustad L E, Marion G M, Norby R J, Mitchell M J, Hartley A E, Cornellissen J H C, Gurevitch J and GTCE-NEWS 2001 A meta-anlysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562.

    Google Scholar 

  • Ryan M G, Binkley D and Fownes J H 1997 Age-related decline in forest productivity: Pattern and process Adv. Ecol. Res. 27, 213-262.

    Google Scholar 

  • Schlesinger W H 1997 Biogeochemistry: An Analysis of Global Change Academic Press, San Diego. 443 p.

    Google Scholar 

  • Schulze E-D 1989 Air pollution and forest decline in a spruce (Picea abies) forest. Science 244, 776-783.

    Google Scholar 

  • Shaver G R, Billings W D, Chapin F S, III, Giblin A E, Nadelhoffer K J, Oechel W C and Rastetter E B 1992 Global change and the carbon balance of arctic ecosystems. BioScience 42, 433-441.

    Google Scholar 

  • Shaver G R, Bret-Harte M S, Jones M H, Johnstone J Gough L, Laundre J A and Chapin F S, III 2001 Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163-3181.

    Google Scholar 

  • Shaver G R and Chapin F S III 1991 Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol. Monogr. 61, 1-31.

    Google Scholar 

  • Shaver G R, Giblin A E, Nadelhoffer K J and Rastetter E B 1996 Plant functional types and ecosystem change in arctic tundras In Plant Functional Types: their Relevance to Ecosystem Properties and Global Change. Eds. T M Smith, H H Shugart and F I Woodward. pp 153-173. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shaver G R, Johnson L C, Cades D H, Murray G, Laundre J A, Rastetter E B, Nadelhoffer K J and Giblin A E 1998 Biomass accumulation and CO2 flux in wet sedge tundras: Responses to nutrients, temperature and light. Ecol. Monogr. 68, 75-97.

    Google Scholar 

  • Shaver G R, Nadelhoffer K J and Giblin A E 1991 Biogeochemical diversity and element transport in a heterogeneous landscape, the North Slope of Alaska. In Quantitative Methods in Landscape Ecology. Eds. M G Turner and R H Gardner. pp 105-126. Springer-Verlag, New York.

    Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal Symbiosis, 2nd edn. Academic Press, San Diego.

    Google Scholar 

  • Steffen W L, Walker B H, Ingram J S I and Koch G W 1992 Global change and Terrestrial Ecosystems: The Operational Plan. ICSU, Stockholm.

    Google Scholar 

  • Van Cleve K and Alexander V 1981 Nitrogen cycling in tundra and boreal ecosystems In Ecological Bulletins. Eds. F E Clark and T Rosswall. pp 375-404.

  • Vitousek P M and Reiners W A 1975 Ecosystem succession and nutrient retention: A hypothesis. BioScience 25, 376-381.

    Google Scholar 

  • Vourlitis G L and Oechel W C 1997 Landscape-scale CO2, H2O vapor and energy flux of moist-wet coastal tundra ecosystems over two growing seasons. J. Ecol. 85, 575-590.

    Google Scholar 

  • Whalen S C and Cornwell J C 1985 Nitrogen, phosphorus and organic carbon cycling in an arctic lake. Can. J. Fish. Aquat. Sci. 42, 797-808.

    Google Scholar 

  • Winston G, Sundquist E T, Stephen B B and Trumbore S E 1997 Winter CO2 fluxes in a boreal forest. J. Geophys. Res. Atmos. 102, 28795-28804.

    Google Scholar 

  • Zimov S A, Semiletov I P, Davidov S P, Voropaev I V, Prosyannikov S F, Wong C S and Chan Y-H 1993a Wintertime CO2 emission from soils of northeastern Siberia. Arctic 46, 197-204.

    Google Scholar 

  • Zimov S A, Zimova G M, Daviodov S P, Daviodova A I, Voropaev Y V, Voropaeva Z V, Prosiannikov S F, Prosiannikova O V, Semiletova I V and Semiletov I P 1993b Winter biotic activity and production of CO2 in Siberian soils: A factor in the greenhouse effect. J. Geophys. Res. 98D, 5017-5023.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hobbie, S.E., Nadelhoffer, K.J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant and Soil 242, 163–170 (2002). https://doi.org/10.1023/A:1019670731128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019670731128

Navigation