Skip to main content
Log in

Profiles of Trinexapac-ethyl- and ABA-induced heat-stable proteins in embryonic axes of wheat seeds

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Treatment of plants with abscisic acid (ABA) can enhance resistance to environmental stresses in general and to preharvest sprouting in particular. Inhibitors of gibberellin (GA) synthesis have been reported to enhance the metabolic activity or effectiveness of ABA. Wheat seeds(Triticum aestivum L., cv. Bet Hashita) were soaked for 2 h in100 μm ABA, in 1250 ppm trinexapac-ethyl (TE, anacylcyclohexanedione-based GA synthesis inhibitor), or in a combination of the two. After drying, seeds were imbibed 24 h in water and the protein in heat-stable extracts from embryos was examined. Treatment with ABA alone increased expression of dehydrin and of a 37 kDa protein. Treatment with TE more than doubled protein concentration in the embryo and enhanced expression of dehydrin and of proteins weighing 37, 20, and15 kDa. Combined treatments of TE and ABA led to enhanced expression of dehydrin and of a 15 kDa protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belefant-Miller, H., Fong, F. & J.D. Smith, 1994. Abscisic acid biosynthesis during corn embryo development. Planta 195: 17–21.

    Article  CAS  Google Scholar 

  • Buelow, E.J. & F.S. Rossi, 1995. Influence of plant growth regulation on freezing stress of cool-season turfgrass. In: Agron AbstrASA. p. 155.

  • Close, T.J., R.D. Fenton & F. Moonan, 1993. A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J., 1997. Dehydrins: A commonality in the response of plants to dehydration and low temperature. Physiol Plant 100: 291–296.

    Article  CAS  Google Scholar 

  • Corbineau, F., A. Benamar & D. Come. 2000. Changes in sensitivity to abscisic acid of the developing and maturing embryo of two wheat cultivars with different sprouting susceptibility. Isr J Plant Sci 48: 189–197.

    Article  CAS  Google Scholar 

  • Dure, L. III, Greenway, S.C. & G.A. Galau, 1981. Developmental biochemistry of cottonseed embryogenesis and germination: XIV. Changing mRNA populations as shown by in vitro and in vivo protein synthesis. J Biochem 20: 4162–4168.

    Article  CAS  Google Scholar 

  • Dure, L. III., 1993. A repeat in d11-mer amino acid motif and plant desiccation. The Plant J 3: 363–369.

    Article  CAS  Google Scholar 

  • Fletcher, R.A. & G. Hofstra, 1988. Triadimefon as potential plant protectant. In: D. Berg & M. Plempel (Eds.), Sterol Biosynthesis Inhibitors: Pharmaceutical and Agrochemical Aspects, pp. 321–331. Ellis Horwood Ltd., Cambridge.

    Google Scholar 

  • Flores-Nimedez, A.A., K. Dorffling & B.S. Vergara, 1993. Improvement of chilling resistance in rice by application of an abscisic acid analog in combination with the growth retardant tetcyclacis. J Plant Growth Regul 12: 27–34.

    Article  CAS  Google Scholar 

  • Garello, G., P. Barthe, M. Bonelli, J. Bianco-Trinchant, J. Bianco & M.T. lePage-Degivry. 2000. Abscisic acid-regulated responses of dormant and non-dormant embryos of Helianthus annus: role of ABA-inducible proteins. Plant Physiol and Biochem 38: 473–482.

    Article  CAS  Google Scholar 

  • Grossmann, K., 1992 Plant growth retardants: their mode of action and benefit for physiol research. In: C.M. Karssen, L.C. van Loon & D. Vreugdenhill (Eds.), Progress in Plant Growth Regulation, pp. 788–797. Kluwer Acad. Publish., Netherlands.

    Google Scholar 

  • Hajeda, R.J., D.W. Horvath, S.J. Gilmour & M.E. Thomashow, 1990. Molecular cloning and expression of cor cold-regulated genes in Arabidopsis thaliana. Plant Physiol 93: 1246–1252.

    Google Scholar 

  • Houde, M., J. Danyluk, J.P. Lalibetre, E. Rassart, R. Dhindsa & P. Sarhan, 1992. Cloning, characterization and expression of a cDNA encoding a 50 kilodalton protein specifically induced by cold acclimatation in wheat. Plant Physiol 99: 1381–1387.

    PubMed  CAS  Google Scholar 

  • Hwang, C.H., 1999. Molecular analysis of freeze-tolerance enhanced by treatment of trinexapac-ethyl in Kentucky bluegrass. Korean J Crop Sci 44: 176–179.

    Google Scholar 

  • Jakob, U., M. Gaestel, J. Engel & J. Buchner, 1993. Small heat shock proteins are molecular chaperones. J Biol Chem 268: 1517–1520.

    PubMed  CAS  Google Scholar 

  • Kalb, V.F., Jr. & R.W. Bernlohr, 1977. A new spectrophotometric assay for protein in cell extracts. Anal Biochem 82: 362–371.

    Article  PubMed  CAS  Google Scholar 

  • Kermode, A.R., 1990. Regulatory mechanisms involved in the transition from seed development to germination. Crit Rev Plant Sci 9: 155–195.

    CAS  Google Scholar 

  • Krochko, J.E., G.D. Abrams, M.K. Loewen, S.R. Abrams & A.J. Cutler, 1998. (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118: 849–860.

    Article  PubMed  CAS  Google Scholar 

  • Meurs, C., A.S. Basra, C.S. Karssen, L.C. van Loon, 1992. Role of abscisic acid in the induction of desiccation tolerance in developing seeds of Arabidopsis thaliana. Plant Physiol 98: 1484–1493.

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, R.I., M.P. Kline, D.N. Bimston & J.J. Cotto, 1997. The heat-shock response: regulation and function of heat-shock proteins and molecular chaperones. Essays in Biochemistry 32: 17–29.

    PubMed  CAS  Google Scholar 

  • Rademacher, W., 2000. Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol Plant Mol Biol 51: 501–531.

    Article  PubMed  CAS  Google Scholar 

  • Ried, J.L. & M.K. Walker-Simmons, 1993. Group 3 late embryogenesis abundant proteins in desiccation-tolerant seedlings of wheat (Triticum aestivum L.). Plant Physiol 102: 125–131.

    PubMed  CAS  Google Scholar 

  • Silhavy, D., G. Hutvanger & E. Barta, 1995. Isolation and characterization of a water-stress-inducible cDNA clone from Solanum chacoense. Plant Mol Biol 27: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N., 1995. Environment and plant metabolism. Blackwell Scientific Pub. Oxford, 270 p.

    Google Scholar 

  • Steinbach, H.S., R.L. Benech-Arnold & R.A. Sanchez. 1997. Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113: 149–154.

    PubMed  CAS  Google Scholar 

  • Vettakkorumakankav, N.N., D. Falk, P. Saxena & A. Fletcher, 1999. A crucial role for gibberellins in stress protection of plants. Plant Cell Physiol 40: 542–548.

    CAS  Google Scholar 

  • Yuan, M.Z., R. Paiva, A.. Kriz & J.A. Juvik. 1995. Dehydrin gene expression in normal and viviparous embryos of Zea mays during seed development and germination. Plant Physiol & Biochem 33: 649–653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korol, L., Klein, J.D. Profiles of Trinexapac-ethyl- and ABA-induced heat-stable proteins in embryonic axes of wheat seeds. Euphytica 126, 77–81 (2002). https://doi.org/10.1023/A:1019663420539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019663420539

Navigation