Skip to main content
Log in

Crystallographic structure of gold films electrodeposited at low current densities

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper we report on the electrodeposition of Au from dicyanoaurate electrolytes at low current densities. If electrodeposition is carried out at current densities lower than 0.25 mA cm−2 a new hexagonal crystalline structure can be observed. This structure is generally codeposited with fcc Au. The new structure dominates for short deposition times. This structure is stabilised by the addition to the bath of metal ions giving rise to UPD behaviour on Au, such as Cu2+ and Tl+. This structure was tentatively assigned to the space group 184 (p6cc). This structure can be explained in terms of the incorporation of extraneous, probably cyanide-related, material. This interpretation is also supported by in situ Raman spectroscopy and by XPS analyses showing that the bulk deposits contain C, N and K. The electrochemical behaviour of the electrodeposition system was studied by cyclic voltammetry. Cyanoaurate baths display a significant cathodic passivation. This phenomenon is reduced by the addition of Cu2+ or Tl+. Voltammograms of baths containing these additives show clear UPD features but no stripping peaks. This behaviour is suggestive of an assisted Au electrodeposition mechanism. Tl is deposited at UPD and oxidatively desorbed by Au(I). Cu is codeposited at UPD with Au forming an alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Raub and F. Sautter, Metalloberfläche 10 (1956) 65.

    Google Scholar 

  2. S. Steinmann, W. FlÜmann and W. Saxer, ibid. 29 (1975) 154.

    Google Scholar 

  3. F. Simon, Gold Technology 16 (1995) 22.

    Google Scholar 

  4. B. Bozzini, G. Giovannelli and P. L. Cavallotti, J. Appl. Electrochem. 29 (1999) 685.

    Google Scholar 

  5. B. Bozzini, G. Giovannelli, S. Natali, B. Brevaglieri, P. L. Cavallotti and G. Signorelli, Eng. Fail. Anal. 6 (1999) 83.

    Google Scholar 

  6. B. Bozzini, P. L. Cavallotti, G. Giovannelli and S. Natali, in Proc. 197th ECS Meeting, Toronto, Canada, 14– 18 May, 2000, PV 2000–16 Electrochemical Society Proceedings, edited by G. Jerkiewicz, J. M. Feliu and B. N. Popov (Electrochemical Society, Pennington, N J, USA) p. 242.

  7. B. Bozzini, G. Giovannelli and S. Natali, Scripta Materialia 43 (2000) 877.

    Google Scholar 

  8. S. D. Rosasco, J. L. Stickney, G. N. Salaita, D. G. Frank, J. Y. Katekaru, B. C. Schardt, M. P. Soriaga, D. A. Stern and A. T. Hubbard, J. Electroanal. Chem. 188 (1985) 95.

    Google Scholar 

  9. B. C. Schardt, J. L. Stickney, D. A. Stern, D. G. Frank, J. Y. Katekaru, S. D. Rosasco, G. N. Salaita, M. P. Soriaga and A. Hubbard, Inorg. Chem. 24 (1985) 1419.

    Google Scholar 

  10. C. Stuhlmann, I. Villegas and M. J. Weaver. Chem. Phys. Lett. 219 (1994) 319.

    Google Scholar 

  11. B. Bozzini, P. L. Cavallotti, M. Balbi and M. Boniardi, Met. Ital. 90 (1998) 23.

    Google Scholar 

  12. D. Poskus, G. Agafonovas and I. Jurgaitiene, J. Electroanal. Chem. 425 (1997) 107.

    Google Scholar 

  13. D. Poskus and G. Agafonovas, ibid. 493 (2000) 50.

    Google Scholar 

  14. B. Bozzini, G. Giovannelli, C. Lenardi, C. Mele and M. Serra. in Proc. ECS Spring Meeting, Washington DC, in press.

  15. J. D. E. McINTYRE and W. F. Peck, J. Electrochem. Soc. 123 (1976) 1800.

    Google Scholar 

  16. D. M. Kolb, M. Przasnyski and H. Gerischer, J. Electroanal. Chem. 54 (1974) 25.

    Google Scholar 

  17. D. M. Kolb, Ber. Bunsenges. Phys. Chem. 92 (1988) 1175.

    Google Scholar 

  18. A. Aberdam, R. Durand and R. Faure, J. Chim. Phys. 88 (1991) 1519.

    Google Scholar 

  19. N. Batina, T. Will and D. M. Kolb, Faraday Disc. 94 (1992) 93.

    Google Scholar 

  20. O. Magnussen, J. Hotlos, R. Nichols and D. Kolb, R. Behm. Phys. Rev. Lett. 64 (1990) 2929.

    Google Scholar 

  21. J. G. Gordon, O. R. Melroy and M. F. Toney, Electrochim. Acta 40 (1995) 3.

    Google Scholar 

  22. I. Omar, H. Pauling and K. JÜttner, J. Electrochem. Soc. 140 (1993) 2187.

    Google Scholar 

  23. Z. Shi, S. Wu and J. Lipkowski, Electrochim. Acta 40 (1995) 9.

    Google Scholar 

  24. E. Schmidt, N. WÜthrich, J. Electroanal. Chem. 34 (1972) 377.

    Google Scholar 

  25. V. A. Vicente and S. Bruckenstein, Anal. Chem. 45 (1973) 2036.

    Google Scholar 

  26. G. SaliÉ and K. Bartels, Electrochim. Acta 39 (1994) 1057.

    Google Scholar 

  27. J. W. Schultze and D. Dickertmann, Surf. Sci. 54 (1976) 489.

    Google Scholar 

  28. R. R. Adzic, J. Wang and B. M. Ocko, Electrochim. Acta 40 (1995) 83.

    Google Scholar 

  29. I. R. Burrows, J. A. Harrison and J. Thompson, J. Electroanal. Chem. 35 (1974) 283.

    Google Scholar 

  30. H. Y. Cheh and R. Sard, ibid. 116 (1971) 1737.

    Google Scholar 

  31. C. Alonso, A. B. SalomÖn and H. D. AbruÑa, Z. f¨ur Phys. Chem. 210 (1999) 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Bozzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzini, B., Giovannelli, G., Natali, S. et al. Crystallographic structure of gold films electrodeposited at low current densities. Journal of Materials Science 37, 3903–3913 (2002). https://doi.org/10.1023/A:1019655522750

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019655522750

Keywords

Navigation