International Journal of Primatology

, Volume 23, Issue 5, pp 1095–1135 | Cite as

Scaling of Sexual Dimorphism in Body Mass: A Phylogenetic Analysis of Rensch's Rule in Primates

  • Richard J. Smith
  • James M. Cheverud
Article

Abstract

We examined the relationship between body mass dimorphism, measured as the natural logarithm of the male/female ratio, and body mass, defined as ln (female mass), with interspecific allometry, phylogenetically independent contrasts, and phylogenetic autocorrelation in 105 primate species. We repeated the analyses for Strepsirhini (N = 23), Haplorhini (N = 82), Platyrrhinii (N = 32), and Catarrhini (N = 47). With independent contrasts, there is statistically significant (p < .05) positive allometry in Primates in general, Haplorhini, and Catarrhini, but not in Strepsirhini or Platyrrhini. The steepest slope (0.134) is for Catarrhini. Results differed when we conducted analyses with traditional interspecific allometry. For example, not only was the Catarrhini slope not statistically significant but also the magnitude of the slope was shallower than that of all other groups, except Strepsirhini. The results indicate that phylogenetic effects influence the scaling of sexual size dimorphism, and that the statistical method used has a large impact on the interpretation of this biological relationship. We discuss issues involved in applying these statistical methods in detail.

sexual size dimorphism Primates Rensch's Rule comparative methods allometry phylogenetically independent contrasts phylogenetic autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Abouheif, E. (1998). Random trees and the comparative methods:Acautionary tale. Evolution 52: 1197–1204.Google Scholar
  2. Abouheif, E., and Fairbairn, D. J. (1997). A comparative analysis of allometry for sexual size dimorphism: Assessing Rensch's rule. Am. Nat. 149: 540–562.Google Scholar
  3. Andersson, M., and Iwasa, Y. (1996). Sexual selection. Trends Ecol. Evol. 11: 53–58.Google Scholar
  4. Cheverud, J. M., Dow, M. M., and Leutenegger, W. (1985). The quantitative assessment of phylogenetic constraints in comparative analyses: Sexual dimorphism in body weight among primates. Evolution 39: 1335–1351.Google Scholar
  5. Clobert, J., Garland, T., Jr., and Barbault, R. (1998). The evolution of demographic tactics in lizards: A test of some hypotheses concerning life history evolution. J. Evol. Biol. 11: 329–364.Google Scholar
  6. Cluttton-Brock, T. H., Harvey, P. H., and Rudder, B. (1977). Sexual dimorphism, socionomic sex ratio and body weight in primates. Nature 269: 797–800.Google Scholar
  7. Cohen, J. (1994). The earth is round (p<. 05). Am. Psychol. 49: 997–1003.Google Scholar
  8. Cunningham, E. J. A., and Birkhead, T. R. (1998). Sex roles and sexual selection. Anim. Behav. 56: 1311–1321.PubMedGoogle Scholar
  9. Delson, E. (1994). Evolutionary history of the colobine monkeys in paleoenvironmental perspective. In Davies, A. G., and Oates, J. F. (eds.), Colobine Monkeys: Their Ecology, Behaviour and Evolution, Cambridge University Press, Cambridge, pp. 11–43.Google Scholar
  10. Diaz-Uriarte, R., and Garland, T., Jr. (1996). Testing hypotheses of correlated evolution using phylogenetically independent contrasts: Sensitivity to deviations from Brownian motion. Syst. Biol. 45: 27–47.Google Scholar
  11. Diaz-Uriarte, R., and Garland, T., Jr. (1998). Effects of branch length errors on the performance of phylogenetically independent contrasts. Syst. Biol. 47: 654–672.PubMedGoogle Scholar
  12. Disotell, T. R. (1994). Generic level relationships of the Papionini (Cercopithecoidea). Am. J. Phys. Anthropol. 94: 47–57.PubMedGoogle Scholar
  13. Disotell, T. R. (1996). The phylogeny of Old World monkeys. Evol. Anthropol. 5: 18–24.CrossRefGoogle Scholar
  14. Elgar, M. A. (1991). Sexual cannibalism, size dimorphism, and courtship behavior in orbweaving spiders (Araneidae). Evolution 45: 444–448.Google Scholar
  15. Ely, J., and Kurland, J. A. (1989). Spatial autocorrelation, phylogenetic constraints, and the causes of sexual dimorphism in primates. Int. J. Primatol. 10: 151–171.Google Scholar
  16. Emerson, S. B. (2000). Vertebrate secondary sexual characteristics-physiological mechanisms and evolutionary patterns. Am. Nat. 156: 84–91.PubMedGoogle Scholar
  17. Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: Pattern and process in the coevolution of body size in males and females. Annu. Rev. Ecol. Syst. 28: 659–687.Google Scholar
  18. Felsenstein, J. (1985). Phylogenies and the comparative method. Am. Nat. 125: 1–15.CrossRefGoogle Scholar
  19. Ford, S. M. (1994a). Evolution of sexual dimorphism in body weight in platyrrhines. Am. J. Primatol. 34: 221–244.Google Scholar
  20. Ford, S. M. (1994b). Taxonomy and distribution of the owl monkey. In Baer, J. F., Weller, R. E., and Kakoma, I. (eds.), Aotus: The Owl Monkey, Academic Press, San Diego, CA, pp. 1–57.Google Scholar
  21. Garland, T., Jr., Dickerman, A. W., Janis, C. M., and Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42: 265–292.Google Scholar
  22. Garland, T., Jr., Harvey, P. H., and Ives, A.R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41: 18–32.Google Scholar
  23. Garland, T., Jr., and Ives, A.R. (2000). Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods. Am. Nat. 155: 346–364.PubMedGoogle Scholar
  24. Garland, T., Jr., Midford, P. E., and Ives, A. R. (1999). An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am. Zool. 39: 374–388.Google Scholar
  25. Garland, T., Jr., Midford, P. E., Jones, J. A., Dickerman, A. W., and Diaz-Uriarte, R. (1998). PDAP: Phenotypic Diversity Analysis Program, Version 5.0, University of Wisconsin, Madison.Google Scholar
  26. Gaulin, S. J. C., and Sailer, L. D. (1984). Sexual dimorphism in weight among the primates: The relative impact of allometry and sexual selection. Int. J. Primatol. 5: 515–535.Google Scholar
  27. Geissmann, T. (1994). Systematik der Gibbons. Z. Kolner Zoo 37: 65–77.Google Scholar
  28. Gittleman, J. L., Anderson, C. G., Kot, M., and Luh, H.-K. (1996). Phylogenetic lability and rates of evolution: A comparison of behavioral, morphological and life history traits. In Martins, E. P. (ed.), Phylogenies and the Comparative Method in Animal Behavior, Oxford University Press, Oxford, pp. 166–205.Google Scholar
  29. Gittleman, J. L., and Kot, M. (1990). Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39: 227–241.Google Scholar
  30. Gittleman, J. L., and Luh, H.-K. (1992). On comparing comparative methods. Annu. Rev. Ecol. Syst. 23: 383–404.Google Scholar
  31. Givnish, T. J., and Sytsma, K. J. (1997). Homoplasy in molecular vs. morphological data: The likelihood of correct phylogenetic inference. In Givnish, T. J., and Sytsma, K. J. (eds.), Molecular Evolution and Adaptive Radiation, Cambridge University Press, Cambridge, pp. 55–101.Google Scholar
  32. Harvey, P. H., and Clutton-Brock, T. H. (1985). Life history variation in primates. Evolution 39: 559–581.Google Scholar
  33. Harvey, P. H., and Pagel, M. D. (1991). The Comparative Method in Evolutionary Biology, Oxford University Press, Oxford.Google Scholar
  34. Harvey, P. H., and Rambuat, A. (2000). Comparative analyses for adaptive radiations. Phil. Trans. R. Soc. Lond. B 355: 1599–1605.Google Scholar
  35. Hayasaka, K., Fujii, K., and Horai, S. (1996). Molecular phylogeny of macaques: Implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol. Biol. Evol. 13: 1044–1053.PubMedGoogle Scholar
  36. Hayashi, S., Hayasaka, K., Takenaka, O., and Horai, S. (1995). Molecular phylogeny of gibbons inferred from mitochondrial DNA sequences: Preliminary report. J. Mol. Evol. 41: 359–365.PubMedGoogle Scholar
  37. Hedrick, A. V., and Temeles, E. J. (1989). The evolution of sexual dimorphism in animals: Hypotheses and tests. Trends Ecol. Evol. 4: 136–138.Google Scholar
  38. Hoelzer, G. A., and Melnick, D. J. (1996). Evolutionary relationships of the macaques. In Fa, J. E., and Lindburg, D. G. (eds.), Evolution and Ecology of Macaque Societies, Cambridge University Press, Cambridge, pp. 3–19.Google Scholar
  39. Jungers, W. L., Burr, D. B., and Cole, M. S. (1998). Body size and scaling of long bone geometry, bone strength, and positional behavior in cercopithecoid primates. In Strasser, E., Fleagle, J. G., Rosenberger, A., and McHenry, H. (eds.), Primate Locomotion. Recent Advances, Plenum Press, New York, pp. 309–330.Google Scholar
  40. Kappeler, P. M. (1990). The evolution of sexual size dimorphism in prosimian primates. Am. J. Primatol. 21: 201–214.Google Scholar
  41. Karubian, J., and Swaddle, J. P. (2001). Selection on females can create ‘larger males.’ Proc. R. Soc. Lond. B 268: 725–728.PubMedGoogle Scholar
  42. Lande, R. (1980). Sexual dimorphism, sexual selection and adaptation in polygenic characters. Evolution 34: 292–307.Google Scholar
  43. Leigh, S. R. (1992). Patterns of variation in the ontogeny of primate body size dimorphism. J. Hum. Evol. 23: 27–50.Google Scholar
  44. Leigh, S. R. (1995). Socioecology and the ontogeny of sexual size dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 97: 339–356.PubMedGoogle Scholar
  45. Leigh, S. R., and Shea, B. T. (1995). Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36: 37–60.Google Scholar
  46. Leutenegger, W. (1978). Scaling of sexual dimorphism in body size and breeding system in primates. Nature 272: 610–611.PubMedGoogle Scholar
  47. Leutenegger, W., and Cheverud, J. (1982). Correlates of sexual dimorphism in primates: Ecological and size variables. Int. J. Primatol. 3: 387–402.Google Scholar
  48. Leutenegger, W., and Cheverud, J. M. (1985). Sexual dimorphism in primates. The effects of size. In Jungers, W. L. (ed.), Size and Scaling in Primate Biology, Plenum Press, New York, pp. 33–60.Google Scholar
  49. Lindenfors, P., and Tullberg, B. S. (1998). Phylogenetic analyses of primate size evolution: The consequences of sexual selection. Biol. J. Linn. Soc. 64: 413–447.Google Scholar
  50. Losos, J. B., and Miles, D. B. (1994). Adaptation, constraint, and the comparative method: Phylogenetic issues and methods. In Wainwright, P. C., and Reilly, S. M. (eds.), Ecological Morphology, University of Chicago Press, Chicago, pp. 60–98.Google Scholar
  51. Martin, R. D., Willner, L. A., and Dettling, A. (1994). The evolution of sexual size dimorphism in primates. In Short, R. V., and Balaban, E. (eds.), The Differences Between the Sexes, Cambridge University Press, Cambridge, pp. 159–200.Google Scholar
  52. Martins, E. P. (ed.) (1996a). Phylogenies and the Comparative Method in Animal Behavior, Oxford University Press, Oxford.Google Scholar
  53. Martins, E. P. (1996b). Phylogenies, spatial autocorrelation, and the comparative method: A computer simulation test. Evolution 50: 1750–1765.Google Scholar
  54. Martins, E. P. (1997). COMPARE, version 2.0. Computer programs for the statistical analysis of comparative data, Department of Biology, University of Oregon, Eugene, OR. [Distributed by the author via the WWW at http://darkwing.uoregon.edu/»compare4/.]Google Scholar
  55. Martins, E. P., and Garland, T., Jr. (1991). Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution 45: 534–557.Google Scholar
  56. Martins, E. P., and Hansen, T. F. (1996a). The statistical analysis of interspecific data: A review and evaluation of phylogenetic comparative methods. In Martins, E. P. (ed.), Phylogenies and the Comparative Method in Animal Behavior, Oxford University Press, Oxford, pp. 22–75.Google Scholar
  57. Martins, E. P., and Hansen, T. F. (1996b). A microevolutionary link between phylogenies and comparative data. In Harvey, P. H., Brown, A. J. L., Smith, J. M., and Nee, S. (eds.), New Uses for New Phylogenies, Oxford University Press, Oxford, pp. 273–288.Google Scholar
  58. Mitani, J. C., Gros-Louis, J., and Richards, A. F. (1996). Sexual dimorphism, the operational sex ratio, and the intensity of male competition in polygynous primates. Am. Nat. 147: 966–980.Google Scholar
  59. Morales, J. C., and Melnick, D. J. (1998). Phylogenetic relationships of the macaques (Cercopithecidae: Macaca), as revealed by high resolution restriction site mapping of mitochondrial ribosomal genes. J. Hum. Evol. 34: 1–23.PubMedGoogle Scholar
  60. Murphy, C. G. (1998). Interaction-independent sexual selection and the mechanisms of sexual selection. Evolution 52: 8–18.Google Scholar
  61. Nunn, C. L. (1995). A simulation test of Smith's “degrees of freedom” correction for comparative studies. Am. J. Phys. Anthropol. 98: 355–367.PubMedGoogle Scholar
  62. Pagel, M. (1992). A method for the analysis of comparative data. J. Theor. Biol. 156: 431–442.Google Scholar
  63. Pagel, M. (1993). Seeking the evolutionary regression coefficient: An analysis of what comparative methods measure. J. Theor. Biol. 164: 191–205.PubMedGoogle Scholar
  64. Pedhazur, E. J. (1982). Multiple Regression in Behavioral Research, 2nd edn., Harcourt Brace, FortWorth, TX.Google Scholar
  65. Plavcan, J. M., and van Schaik, C. (1997). Intrasexual competition and body weight dimorphism in anthropoid primates. Am. J. Phys. Anthropol. 103: 37–68.PubMedGoogle Scholar
  66. Porter, C. A., Page, S. L., Czelusniak, J., Schneider, H., Schneider, M. P. C., Sampaio, I., and Goodman, M. (1997). Phylogeny and evolution of selected primates as determined by sequences of the e-globin locus and 50 flanking regions. Int. J. Primatol. 18: 261–295.Google Scholar
  67. Preziosi, R. F., and Fairbairn, D. J. (2000). Lifetime selection on adult body size and components of body size in a waterstrider: Opposing selection and maintenance of sexual size dimorphism. Evolution 54: 558–566.PubMedGoogle Scholar
  68. Price, T. (1997). Correlated evolution and independent contrasts. Phil. Trans. R. Soc. Lond. B 352: 519–529.Google Scholar
  69. Promislow, D. E. L., Montgomerie, R., and Martin, T. E. (1992). Mortality costs of sexual dimorphism in birds. Proc. R. Soc. Lond. B 250: 143–150.Google Scholar
  70. Purvis, A. (1995).Acomposite estimate of primate phylogeny. Phil. Trans. R. Soc. Lond. B 348: 405–421.Google Scholar
  71. Ralls, K. (1977). Sexual dimorphism in mammals: Avian models and unanswered questions. Am. Nat. 111: 917–938.Google Scholar
  72. Ranta, E., Laurila, A., and Elmberg, J. (1994). Reinventing the wheel: Analysis of sexual dimorphism in body size. Oikos 70: 313–321.Google Scholar
  73. Reeve, J. P., and Fairbairn, D. J. (2001). Predicting the evolution of sexual size dimorphism. J. Evol. Biol. 14: 244–254.Google Scholar
  74. Reiss, M. J. (1986). Sexual dimorphism in body size: Are larger species more dimorphic? J. Theoret. Biol. 121: 163–172.Google Scholar
  75. Rensch, B. (1959). Evolution Above the Species Level, Columbia University Press, New York.Google Scholar
  76. Ricklefs, R. E., and Starck, J. M. (1996). Applications of phylogenetically independent contrasts: A mixed progress report. Oikos 77: 167–172.Google Scholar
  77. Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J. (1990). Accuracy of estimated phylogenies: Effects of true topology and evolutionary model. Evolution 44: 1671–1684.Google Scholar
  78. Ruvolo, M. (1988). Genetic evolution in the African guenons. In Gautier-Hion, A., Bourliere, F., Gautier, J.-P., and Kingdon, J. (eds.), A Primate Radiation: Evolutionary Biology of the African Guenons, Cambridge University Press, Cambridge, pp. 127–139.Google Scholar
  79. Rylands, A. B. (1995). A species list for the NewWorld primates (Platyrrhini): Distribution by country, endemism, and conservation status according to the Mace-Lande system. Neotropical Primates 3 (Suppl.): 113–160.Google Scholar
  80. Schneider, H., and Rosenberger, A. L. (1996). Molecules, morphology, and platyrrhine systematics. In Norconk, M. A., Rosenberger, A. L., and Garber, P. A. (eds.), Adaptive Radiation of Neotropical Primates, Plenum Press, New York, pp. 3–19.Google Scholar
  81. Schneider, H., Schneider, M. P. C., Sampaio, I., Harada, M. L., Stanhope, M., Czelusniak, J., and Goodman, M. (1993). Molecular phylogeny of the New World monkeys (Platyrrhini, Primates). Mol. Phylogenet. Evol. 2: 225–242.PubMedGoogle Scholar
  82. Shine, R. (1989). Ecological causes for the evolution of sexual dimorphism: A review of the evidence. Q. Rev. Biol. 64: 419–441.PubMedGoogle Scholar
  83. Smith, R. J. (1994). Degrees of freedom in interspecific allometry: An adjustment for the effects of phylogenetic constraint. Am. J. Phys. Anthropol. 93: 95–107.PubMedGoogle Scholar
  84. Smith, R. J. (1999). Statistics of sexual size dimorphism. J. Hum. Evol. 36: 423–459.PubMedGoogle Scholar
  85. Smith, R. J., and Jungers, W. L. (1997). Body mass in comparative primatology. J. Hum. Evol. 32: 523–559.PubMedGoogle Scholar
  86. Teather, K. L., and Weatherhead, P. J. (1994). Allometry, adaptation, and the growth and development of sexually dimorphic birds. Oikos 71: 515–525.Google Scholar
  87. van der Kuyl, A. C., Kuiken, C. A., Dekker, J. T., and Goudsmit, J. (1995). Phylogeny of African monkeys based upon mitochondrial 12S rRNA sequences. J. Mol. Evol. 40: 173–180.PubMedGoogle Scholar
  88. Webster, M. S. (1992). Sexual dimorphism, mating system and body size inNewWorld blackbirds (Icterinae). Evolution 46: 1621–1641.Google Scholar
  89. Weckerly, F. W. (1998). Sexual-size dimorphism: Influence of mass and mating systems in the most dimorphic mammals. J. Mammal. 79: 33–52.Google Scholar
  90. Wikelski, M., and Trillmich, F. (1997). Body size and sexual size dimorphism in marine iguanas fluctuate as a result of opposing natural and sexual selection: An island comparison. Evolution 51: 922–936.Google Scholar
  91. Wiley, R. H. (1974). Evolution of social organization and life-history patterns among grouse. Q. Rev. Biol. 49: 201–227.PubMedGoogle Scholar
  92. Williams, J. B. (1966). A phylogenetic perspective of evaporative water loss in birds. Auk 113: 457–472.Google Scholar
  93. Yoder, A. D. (1997). Back to the future: A synthesis of Strepsirrhine systematics. Evol. Anthropol. 6: 11–22.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  • Richard J. Smith
    • 1
  • James M. Cheverud
    • 1
    • 2
  1. 1.Department of AnthropologyWashington UniversitySt. Louis
  2. 2.Department of Anatomy and NeurobiologyWashington UniversitySt. Louis

Personalised recommendations