Skip to main content
Log in

Molecular Dynamic Simulation of the Structure of Solvation Shells of Na+ and K+ in N,N-dimethylformamide at Various Temperatures

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new model potential of ion–DMF interaction is constructed based on quantum-mechanical calculations of the energy of Na+ and K+ interaction with N,N-dimethylformamide (DMF). Molecular dynamics simulation of Na+ and K+ has been carried out in liquid DMF at 233, 298, and 318 K. The solvation shells of the ions are constructed by analyzing the radial distribution functions and the coordination numbers of the ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. P. Puhovski and B. M. Rode, Chem. Phys., 190, 61-82 (1995).

    Google Scholar 

  2. D. V. Sakharov, “Ion dynamics and structure of electrolytic solutions in N,N-dimethylformamide at various temperatures,” Abstract of Chemical Sciences Candidate's Dissertation, Ivanovo (2000).

  3. Y. P. Puhovski and B. M. Rode, J. Phys. Chem., 99, 1566-1576 (1995).

    Google Scholar 

  4. Y. P. Puhovski and B. M. Rode, J. Chem. Phys., 102,2920-2927 (1995).

    Google Scholar 

  5. Y. P. Puhovski and B. M. Rode, ibid., 107, 6908-6917 (1997).

    Google Scholar 

  6. Y. P. Puhovski and B. M. Rode, Chem. Phys., 222, 43-57 (1997).

    Google Scholar 

  7. L. P. Safonova, A. M. Kolker, and A. N. Kinchin, in: Advances and Problems in Solvation Theory: Structural Thermodynamic Aspects [in Russian], V. K. Abrosimov, Al. G. Krestov, G. A. Alper, et al. (eds.), Nauka, Moscow (1998), pp. 63-105.

    Google Scholar 

  8. I. S. Perelygin, L. L. Kimtis, V. V. Chizhik, et al., Experimental Methods in Solution Chemistry: Spectroscopy and Colorimetry [in Russian], G. A. Krestov (ed.), Nauka, Moscow (1995), p. 380.

    Google Scholar 

  9. M. P. Allen and D. J. Tildesley, Computer Simulation in Chemical Physics, Kluwer, Dordrecht (1992).

    Google Scholar 

  10. G. Ciccoti and W. G. Hoover, Molecular Dynamics Simulation in Statistical Mechanical Systems, North-Holland, Amsterdam (1985).

    Google Scholar 

  11. Y. M. Kessler, Y. P. Puhovski, M. G. Kiselev, and I. I. Vaisman, Chemistry of Nonaqueous Solutions: Current Progress, G. Mamontov and A. I. Popov (eds.), VCH, New York (1994), pp. 307-373.

    Google Scholar 

  12. M. Chalaris and J. A. Samios, J. Mol. Liq., 78, 201-215 (1998).

    Google Scholar 

  13. W. L. Jorgensen and C. J. Swenson, J. Am. Chem. Soc., 107, 567-578 (1985).

    Google Scholar 

  14. J. W. Essex and W. L. Jorgensen, J. Phys. Chem., 99, 17956-17962 (1995).

    Google Scholar 

  15. J. Gao, J. J. Pavelites, and D. Habibollazadeh, ibid., 100, 2689-2697 (1996).

    Google Scholar 

  16. Y. Marcus, Chem. Rev., 88, 1475-1498 (1988).

    Google Scholar 

  17. E. I. Khomyakov, V. P. Avdeev, N. I. Nikuashina, and E. N. Popova, “Investigation of bulk properties and dielectric constant of methylethylketone-dimethylformamide,” [in Russian], ONIITEKhIM dep. No. 417-P84, May 10 (1984), p. 21.

  18. H. J. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, et al., J. Phys. Chem., 85, 3684-3690 (1984).

    Google Scholar 

  19. R. W. Hockney, Meth. Comp. Phys., 9, 136-147 (1970).

    Google Scholar 

  20. G. Ciccotti, M. Ferrario, and J.-P. Ryckaert, Mol. Phys., 47, 1253-1264 (1982).

    Google Scholar 

  21. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1987).

    Google Scholar 

  22. J. A. Barker and R. O. Watts, Mol. Phys., 26, 789-795 (1973).

    Google Scholar 

  23. C. K. Finter and H. G. Hertz, J. Chim. Phys. Chim. Biol., 85, 589-596 (1988).

    Google Scholar 

  24. H. G. Hertz, ibid., 82, 557-563 (1988).

    Google Scholar 

  25. A. Sacco, M. C. Picinni, and M. Holz, J. Sol. Chem., 21, 109-120 (1992).

    Google Scholar 

  26. R. J. deSando and G. H. Brown, J. Phys. Chem., 72, 1088-1095 (1968).

    Google Scholar 

  27. T. Uno, K. Mashida, and I. Hamanaka, Bull. Chem. Soc. Jpn., 34, 1448-1458 (1961).

    Google Scholar 

  28. D. Balasubramanian, A. Goel, and C. N. R. Rao, Chem. Phys. Lett., 17, 482-493 (1972).

    Google Scholar 

  29. D. Balasubramanian and R. Snaikh, Biopolymers, 12, 1639-1649 (1973).

    Google Scholar 

  30. C. K. Finter and H. G. Hertz, Z. Phys. Chem., N.F., 148, 75-96 (1986).

    Google Scholar 

  31. K. Ozutsumi, M. Kiode, H. Suzuki, and S. Ishiguro, J. Phys. Chem., 97, 500-502 (1993).

    Google Scholar 

  32. N. A. Matwiyoff and W. G. Movius, J. Am. Chem. Soc., 2, 5077-5083 (1967).

    Google Scholar 

  33. W. G. Movius and N. A. Matwiyoff, J. Phys. Chem., 72, 3083-3095 (1968).

    Google Scholar 

  34. H. Emons, M. Siedler, B. Thomas, and A. Porzel, Z. Anorg. Allg. Chem., 558, 231-239 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukhovskii, Y.P., Sakharov, D.V. & Safonova, L.P. Molecular Dynamic Simulation of the Structure of Solvation Shells of Na+ and K+ in N,N-dimethylformamide at Various Temperatures. Journal of Structural Chemistry 43, 284–292 (2002). https://doi.org/10.1023/A:1019652508436

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019652508436

Keywords

Navigation