Skip to main content
Log in

Dimethylsulfoxide Enhances CNS Neuronal plasma membrane resealing after injury in low temperature or low calcium

  • Published:
Journal of Neurocytology

Abstract

The inability to repair the damaged membrane may be one of the key mechanisms underlying the severe neuronal degeneration and overall functional loss seen in in vivo spinal cord injury and traumatic axonal injury in blunt head trauma. Promoting membrane resealing following damage may therefore constitute a potential effective therapeutic intervention in treating head trauma and spinal cord injuries. In our previous studies, we have shown that the axolemma failed to reseal following transection in clinically related situations, such as low extracellular calcium and low temperature. Our current studies indicate that DMSO is capable of rendering significant improvement in guinea pig axonal membrane resealing following transection in both 0.5 mM [Ca2+]0 and 25°C situations. This was demonstrated physiologically by monitoring membrane potential recovery and anatomically by conducting HRP-exclusion assays 60 minutes after injury. Further, we have shown that the addition of DMSO in normal Krebs' solution (2 mM [Ca2+]0 and 37°C) resulted in a decrease in membrane repair following injury. This indicates that DMSO-mediated membrane repair is sensitive to temperature and calcium. This study suggests the role of DMSO in axonal membrane resealing in clinically relevant conditions and raises the possibility of using DMSO in combination with other more established therapies in spinal cord injury treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Badylak, S. F., Babbs, C. F., Kougias, C. & Blaho, K. (1986) Effect of allopurinol and dimethylsulfoxide on long-term survival in rats after cardiorespiratory arrest and resuscitation. American Journal of Emergency Medicine 4, 313–318.

    Google Scholar 

  • Brown, M., Desai, M., Traber, L. D., Herndon, D. N. & Traber, D. L. (1988) Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. Journal of Burn Care and Rehabilitation 9, 22–25.

    Google Scholar 

  • Bruck, R., Aeed, H., Shirin, H., Matas, Z., Zaidel, L., Avni, Y. & Halpern, Z. (1999) The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide-induced fulminant hepatic failure. Journal of Hepatology 31, 27–38.

    Google Scholar 

  • Buki, A., Siman, R., Trojanowski, J. Q. & Povlishock, J. T. (1999) The role of calpain-mediated spectrin proteolysis in traumatically induced axonal injury. Journal of Neuropathology and Experimental Neurology 58, 365–375.

    Google Scholar 

  • Clifton, G. L., Allen, S., Barrodale, P., Plenger, P., Berry, J., Koch, S., Fletcher, J., Hayes, R. L. & Choi, S. C. (1993) A phase II study of moderate hypothermia in severe brain injury. Journal of Neurotrauma 10, 263–271.

    Google Scholar 

  • Cochran, T., Stefanko, J., Moore, C. & Saik, R. (1983) Dimethylsulfoxide protection against gastric stress ulceration. Current Surgery 40, 435–437.

    Google Scholar 

  • Croall, D. E. & de Martino, G. N. (1991) Calciumactivated neurtal protease (calpain) system: Structure, function, and regulation. Physiological Reviews 71, 813–847.

    Google Scholar 

  • Eddleman, C. S., Ballinger, M. L., Smyers, M. E., Fishman, H. M. & Bittner, G. D. (1998) Endocytotic formation of vesicles and other membranous structures induced by Ca2+ and axolemmal injury. Journal of Neuroscience 18, 4029–4041.

    Google Scholar 

  • Fitzpatrick, M. O., Maxwell, W. L. & Graham, D. I. (1998) The role of the axolemma in the initiation of traumatically induced axonal injury [editorial]. Journal of Neurology, Neurosurgery and Psychiatry 64, 285–287.

    Google Scholar 

  • Garrett, R. H. & Grisham, C. M. (eds) (1999) Biochemistry. Orlando: Saunders College Publishing.

    Google Scholar 

  • Gitler, D. & Spira, M. E. (1998) Real time imaging of calcium-induced localized proteolytic activity after axotomy and its relation to growth cone formation. Neuron 20, 1123–1135.

    Google Scholar 

  • Gross, G. W. & Higgins, M. L. (1987) Cytoplasmic damage gradients in dendrites after transection lesion. Experimental Brain Research 67, 52–61.

    Google Scholar 

  • Hamakubo, T., Kannagi, R., Murachi, T. & Matus, A. (1986) Distribution of calpains I and II in rat brain. Journal of Neuroscience 6, 3103–3111.

    Google Scholar 

  • Hansebout, R. R., Tanner, J. A. & Romerosierra, C. (1984) Current status of spinal cord cooling in the treatment of acute spinal cord injury. Spine 9, 508–511.

    Google Scholar 

  • Hayes, K. C., Hsieh, J. T. C., Potter, P. J., Wolfe, D. L., Delaney, G. A. & Blight, A. B. (1993) Effects of induced hypothermia on somatosensory evoked potentials in patients with chronic spinal cord injury. Paraplegia 31, 730–741.

    Google Scholar 

  • Heimer, L. & ZÁ borszky, L. (1989) Neuroanatomical Trac-Tracing Methods. New York: Plenum Press.

    Google Scholar 

  • Howard, M. J., David, G. & Barrett, J. N. (1999) Resealing of transected myelinated mammalian axons in vivo: Evidence for involvement of calpain. Neuroscience 93, 807–815.

    Google Scholar 

  • Kirpatovskii, V. I., Petrov D. A. & Kudriavtsev, Iu. V. (1995) The effect of an emulsion containing alphatocopherol and dimethylsulfoxide and of verapamil on reperfusion injury to the rat kidneys. Urologiia i Nefrologiia 32–35.

  • Koizumi, H. & Povlishock, J. T. (1998) Posttraumatic hypothermia in the treatment of axonal damage in an animal model of traumatic axonal injury. Journal of Neurosurgery 89, 303–309.

    Google Scholar 

  • Lucas, J. H., Emery, D. G., Wang, G., Rosenbergschaffer, L. J., Jordan, R. S. & Gross, G. W. (1994) In vitro investigations of the effects of nonfreezing low temperatures on lesioned and uninjured mammalian spinal neurons. Journal of Neurotrauma 11, 35–61.

    Google Scholar 

  • Lucas, J. H., Gross, G. W., Emery, D. G. & Gardner, C. R. (1985) Neuronal survival or death after dendrite transection close to the perikaryon: Correlation with electrophysiologic, morphologic, and ultrastructural changes. Central Nervous System Trauma 2, 231–255.

    Google Scholar 

  • Luna, E. J & Hitt, A. L. (1992) Cytoskeleton-plasma membrane interactions. Science 258, 955–964.

    Google Scholar 

  • Maxwell, W. L., Kosanlavit, R., McCreath, B. J., Reid, O. & Graham, D. I. (1999) Freeze-fracture and cytochemical evidence for structural and functional alteration in the axolemma and myelin sheath of adult guinea pig optic nerve fibers after stretch injury. Journal of Neurotrauma 16, 273–284.

    Google Scholar 

  • Maxwell, W. L., McCreath, B. J., Graham, D. I. & Gennarelli, T. A. (1995) Cytochemical evidence for redistribution of membrane pump calcium-ATPase and ecto-Ca-ATPase activity, and calcium influx in myelinated nerve fibres of the optic nerve after stretch injury. Journal of Neurocytology 24, 925–942.

    Google Scholar 

  • Maxwell, W. L., Povlishock, J. T. & Graham, D. L. (1997) A mechanistic analysis of nondisruptive axonal injury: A review [published erratum appears in J Neurotrauma 1997; 14(10), 755]. Journal of Neurotrauma 14, 419–440.

    Google Scholar 

  • Maxwell, W. L., Watt, C., Graham, D. I. & Gennarelli, T. A. (1993) Ultrastructural evidence of axonal shearing as a result of lateral acceleration of the head in non-human primates. Acta Neuropathologica 86, 136–144.

    Google Scholar 

  • McNeil, P. L. & Terasaki, M. (2001) Coping with the inevitable: How cells repair a torn surface membrane. Nature Cell Biology 3, 124–129.

    Google Scholar 

  • Miyake, K., McNeil, P. L., Suzuki, K., Tsunoda, R. & Sugai, N. (2001) An actine barrier to resealing. Journal of Cell Science 114, 3487–3494.

    Google Scholar 

  • Pettus, E. H., Christman, C. W., Giebel, M. L. & Povlishock, J. T. (1994) Traumatically induced altered membrane permeability: Its relationship to traumatically induced reactive axonal change. Journal of Neurotrauma 11, 507–522.

    Google Scholar 

  • Pettus, E. H. & Povlishock, J. T. (1996) Characterization of a distinct set of intra-axonal ultrastructural changes associated with traumatically induced alteration in axolemmal permeability. Brain Research 722, 1–11.

    Google Scholar 

  • Povlishock, J. T. (1992) Traumatically induced axonal injury: Pathogenesis and pathobiological implications. Brain Pathology 2, 1–12.

    Google Scholar 

  • Povlishock, J. T. & Pettus, E. H. (1996) Traumatically induced axonal damage: Evidence for enduring changes in axolemmal permeability with associated cytoskeletal change. Acta Neurochirurgica-Supplementum 66, 81–86.

    Google Scholar 

  • Robertson, C. L., Clark, R. S., Dixon, C. E., Alexander, H. L., Graham, S. H., Wisniewski, S. R., Marion, D. W., Safar, P. J. & Kochanek, P. M. (2000) No long-term benefit from hypothermia after severe traumatic brain injury with secondary insult in rats. Crititcal Care Medicine 28, 3218–3223.

    Google Scholar 

  • Roederer, E., Goldberg, N. H. & Cohen, M. J. (1983) Modification of retrograde degeneration in transected spinal axons of the lamprey by applied DC current. Journal of Neuroscience 3, 153–160.

    Google Scholar 

  • Saatman, K. E., Bozyczko-Coyne, D., Marcy, V., Siman, R. & McIntosh, T. K. (1996) Prolonged calpain-mediated spectrin breakdown occurs regionally following experimental brain injury in the rat. Journal of Neuropathology and Experimental Neurology 55, 850–860.

    Google Scholar 

  • Sanger, J. W., Sanger, J. M., Kreis, T. E. & Jockusch, B. M. (1980) Reversible translocation of cytoplasmic actin into the nucleus caused by dimethyl sulfoxide. Proceedings of the National Academy of Sciences of the USA 77, 5268–5272.

    Google Scholar 

  • Shi, R., Asano, T., Vining, N. C. & Blight, A. R. (2000) Control of membrane sealing in injured mammalian spinal cord axons. Journal of Neurophysiology 84, 1763–1769.

    Google Scholar 

  • Shi, R. & Blight, A. R. (1996) Compression injury of mammalian spinal cord in vitro and the dynamics of action potential conduction failure. Journal of Neurophysiology 76, 1572–1580.

    Google Scholar 

  • Shi, R. & Borgens, R. B. (2000) Anatomic repair of nervemembranein crushedmammalianspinal cordwith polyethylene glycol. Journal of Neurocytology 29, 633–644.

    Google Scholar 

  • Shi, R. & Pryor, J. D. (2000) Temperature dependence of membrane sealing following transection in mammalian spinal cord axons. Neuroscince 98, 157–166.

    Google Scholar 

  • Shiozaki, T., Kato, A., Taneda, M., Hayakata, T., Hashiguchi, N., Tanaka, H., Shimazu, T. & Sugimoto, H. (1999) Little benefit from mild hypothermia therapy for severely head injured patients with low intracranial pressure. Journal of Neurosurgery 91, 185–191.

    Google Scholar 

  • Steinhardt, R. A., Bi, G. & Alderton, J. M. (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390–393.

    Google Scholar 

  • Stokes, B. T., Fox, P. & Hollinden, G. (1983) Extracellular calcium activity in the injured spinal cord. Experimental Neurology 80, 561–572.

    Google Scholar 

  • Vincent, C., Pickering, S. J., Johnson, M. H. & Quick, S. J. (1990) Dimethylsulfoxide affects the organization of microfilaments in the mouse oocyte. Molecular Reproduction and Development 26, 227–235.

    Google Scholar 

  • Westergren, H., Farooque, M., Olsson, Y. & Holtz, A. (2000) Motor function changes in the rat following severe spinal cord injury. Does treatment with moderate systemic hypothermia improve functional outcome? Acta Neurochirurgica 142, 567–573.

    Google Scholar 

  • Winckler, B., Forscher, P. & Mellman, I. (1999) A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701.

    Google Scholar 

  • Xie, X. & Barrett, J. N. (1991) Membrane resealing in cultured rat septal neurons after neurite transection: Evidence for enhancement by Ca2+-triggered protease activity and cytoskeletal disassembly. Journal of Neuroscience 11, 3257–3267.

    Google Scholar 

  • Yawo, H. & Kuno, M. (1985) Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. Journal of Neuroscience 5, 1626–1632.

    Google Scholar 

  • Young, W., Yen, V. & Blight, A. (1982) Extracellular calcium ionic activity in experimental spinal cord contusion. Brain Research 253, 105–113.

    Google Scholar 

  • Yu, Z. W. & Quinn, P. J. (1998) The modulation of membrane structure and stability by dimethyl sulphoxide (review). Molecular Membrane Biology 15, 59–68.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, R., Qiao, X., Emerson, N. et al. Dimethylsulfoxide Enhances CNS Neuronal plasma membrane resealing after injury in low temperature or low calcium. J Neurocytol 30, 829–839 (2001). https://doi.org/10.1023/A:1019645505848

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019645505848

Keywords

Navigation