Skip to main content
Log in

Review Modern magnetic materials in data storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current status of the technology of magnetic recording as used in disk drives is reviewed. The emphasis is on the magnetic materials used in the application and on some of the technical problems that may limit the increase in areal density. The new technology of magnetic random access memory (MRAM), which has evolved from the magnetic recording application, is also reviewed. A wide range of magnetic materials is essential for the advance of magnetic recording and the MRAM technology. For the magnetic-recording application the requirements are for high-magnetization, soft magnetic materials for write heads, new antiferromagnetic alloys with high blocking temperatures, large coupling to ferromagnetic films and low susceptibility to corrosion for pinning films in giant magnetoresistive sensors, and for the MRAM application, the requirement is for new ferromagnetic alloys with large values of tunneling polarization ratio. A significant limitation to magnetic recording is found to be the inconsistent demands on media thickness: small media thicknesses are required for large values of signal-to-noise ratio, while large values of thickness are required to reduce the impact of the superparamagnetic effect, which results in the potential for data loss over time. Both of these requirements are discussed. Multilayer ferromagnetic films for recording surfaces are shown to allow both large signal-to-noise ratio and adequate resistance to data loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. GROCHOWSKI, IBM Almaden Research Laboratories (http://www.storage.ibm.com/technolo/grochows/grocho01.htm).

  2. C. D. MEE, E. D. DANIEL and M. H. CLARK, “Magnetic Recording: The First 100 Years” (JohnWiley & Sons, New York, 1998).

    Google Scholar 

  3. R. L. COMSTOCK, “Introduction to Magnetism and Magnetic Recording” (John Wiley & Sons, New York, 1999).

    Google Scholar 

  4. R. L. COMSTOCK, “Data Storage in Rigid Disks”, in Magnetic Storage Handbook, 2nd edn, edited by C. D. Mee and E. D. Daniel (McGraw-Hill, New York, 1996).

    Google Scholar 

  5. C. D. MEE and E. D. DANIELS (eds), “Magnetic Recording Technology” (McGraw-Hill, New York, 1996).

    Google Scholar 

  6. S. X. WANG and A. M. TARATORIN, “Magnetic Information Storage Technology” (Academic Press, San Diego, 1999).

    Google Scholar 

  7. M. L WILLIAMS and R. L. COMSTOCK, AIP Conf. Proc. Magn. Mater. 5 (1971) 738.

    Google Scholar 

  8. N. ROBERTSON, B. HU and C. TSANG, IEEE Trans. Magn. 33 (1997) 2818.

    Google Scholar 

  9. R. M. BOZORTH, “Ferromagnetism” (Van Nostrand, New York, 1951) (reprinted by IEEE Press, New York, 1993).

    Google Scholar 

  10. X. LIU and G. ZANGARI, IEEE Trans. Magn. 37 (2001) 1764.

    Google Scholar 

  11. T. OSAKA, T. YOKOSHIMA and T. NAKANISHI ibid. 37 (2001) 1761.

    Google Scholar 

  12. Y. LIU, V. HARRIS and M. KRYDER, ibid. 37 (2001) 1779.

    Google Scholar 

  13. Y. DING, S. C. BYEON and C. ALEXANDER, Jr., ibid. 37 (2001) 1776.

    Google Scholar 

  14. S. C. BYEON, F. LIU and G. J. MANKEY, ibid. 37 (2001) 1770.

    Google Scholar 

  15. M. BAIBACH, J. BROTO, A. FERT, F. NGUYEN VAN DAN, F. PETROFF, P. ETIENNE, G. CREUZET, A. FREDRICK and J. CHAZELAS, Phys. Rev. Lett. 61 (1988) 2472.

    Google Scholar 

  16. H. KANAI, K. YAMADA, K. AOSHIMA, Y. OHTSUKA, J. KANE, M. KANAMINE, J. TODA and Y. MIZOSHITA, IEEE Trans. Magn. 32 (1996) 3368.

    Google Scholar 

  17. B. DIENY, V. SPERIOSU, S. PARKIN, P. BAUMGART and D. WILHOIT, J. Appl. Phys. 69 (1991) 4774.

    Google Scholar 

  18. S. PARKIN, Appl. Phys. Lett. 61 (1992) 1358.

    Google Scholar 

  19. S. PARKIN and D. MAURI, Phys. Rev. B 44 (1991) 7131.

    Google Scholar 

  20. T. LIN, C. TSANG, R. FONTANA and J. HOWARD, IEEE Trans. Magn. 32 (1995) 2585.

    Google Scholar 

  21. A. DEVASAHAYAM and M. KRYDER, ibid. 35 (1999) 649.

    Google Scholar 

  22. Y. HAMAKAWA, M. KOMURO, K. WATANABI, H. HOSHIYA, T. OKADA, K. NAKAMOTO, Y. SUZUKI, M. FUYAMA and H. FUKUI, ibid. 35 (1999) 677.

    Google Scholar 

  23. H. KISHI, Y. KITADE, Y. MIYAKI, A. TANAKA and K. KOBAYASHI, ibid 32 (1996) 3380.

    Google Scholar 

  24. J. MATHON, Contemp. Phys. 32 (1999) 143.

    Google Scholar 

  25. S. PARKIN, K. ROCHE, M. SAMANT, P. RICE, R. BEYERS, R. SCHEUERLEIN, E. O'sULLIVAN, S. BROWN, J. BUCCHIGANO, D. ABRAHAM, Y. LU, M. ROOKS, P. TROUILLOUD, R. WANNER and W. GALLAGHER, J. Appl. Phys. 85 (1999) 5828.

    Google Scholar 

  26. S. TEHRANI, B. ENGEL, J. M. SLAUGHTER, E. CHEN, M. DEHERRA, M. DURLAM, P. NAJI, R. WHIG, J. JANESKY and J. CALDER, IEEE Trans. Magn. 36 (2000) 2752. The curve of magnetoresistance % is from a private communication with Mark deHerrera from Motorola.

    Google Scholar 

  27. R. MESERVEY and P. TEDROW, Phys. Rep. 238 (1994) 175.

    Google Scholar 

  28. M. DOERNER, X. BIAN, M. MADISON, K. TANG, Q. PENG, A. POLCYN, T. ARNOLDUSSEN, M. TONEY, M. MIRAMAANI, K. TAKANO, E. FULLERTON, D. MARGULIES, M. SCHABES, K. RUBIN, M. PINARBASI, S. YUAN, M. PARKER and D. WELLER, IEEE Trans. Magn. 37 (2001) 1052.

    Google Scholar 

  29. T. C. ARNOLDUSSEN, ibid. 34 (1998) 1851.

    Google Scholar 

  30. M. MADISON, T. ARNOLDUSSEN, M. PINARBASI, T. CHANG, M. PARKER, J. LI, S. DUAN, X. BIAN, M. MIRZAMAANI, R. PAYNE, C. FOX and R. H. WANG, ibid. 35 (1999) 695.

    Google Scholar 

  31. D. WELLER and A. MOSER, ibid. 35 (1999) 4423.

    Google Scholar 

  32. E. N. ABARRA, B. R. ACHARYA, A. INOMATA and I. OKAMOTO, ibid. 37 (2001) 1426.

    Google Scholar 

  33. E. N. ABARRA, A. INOMATA, H. SATO, I. OKAMOTO and Y. MIZOSHITA, J. Appl. Phys. 77 (2000) 2581.

    Google Scholar 

  34. E. E. FULLERTON, D. T. MARGULIES, N. E. SCHABES, M. CAREY, B. GURNEY, A. MOSER, M. BEST, G. ZELTZER, K. RUBIN and H. ROSEN, J. Appl. Phys. 77 (2000) 3806.

    Google Scholar 

  35. M. E. SCHABES, E. FULLERTON and D. MARGULIES, IEEE Trans. Magn. 37 (2001) 1432.

    Google Scholar 

  36. IBM Research News (http://www.research.ibm.com/resources/ news/20010518_whitepaper.shtml), (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comstock, R.L. Review Modern magnetic materials in data storage. Journal of Materials Science: Materials in Electronics 13, 509–523 (2002). https://doi.org/10.1023/A:1019642215245

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019642215245

Keywords

Navigation