Skip to main content
Log in

Changes of the organotypic retinal organization in Borna virus-infected Lewis rats

  • Published:
Journal of Neurocytology

Abstract

Retinae of Borna disease virus (BDV)-infected Lewis rats were investigated with emphasis on long-term changes in organotypic tissue organization and glia-neuron relationship. Virus inoculation was attained via intracerebral BDV injection. Following survival times ranging between two and eight months, the retinal thickness was reduced up to one third of that of controls. Photoreceptor segments were completely extinguished and the number of neurons was dramatically reduced. The typical laminar organization of the retina was largely dissolved. Electron microscopy revealed severe spongy degeneration. Large numbers of activated microglia and macrophages were found, both cell types performing very active phagocytosis. The microglial cells expressed an extraordinary phenotype as characterized by large numbers of processes, with some of them penetrating the endfeet of Müller cells and others establishing highly complex interdigitations with vacuolized swellings and endings of neuronal processes. Müller cells were not reduced in number but displayed clear indications of gliosis such as alterations in the immunoreactivity for filament proteins and glutamine synthetase, significantly thickened stem processes, and an altered pattern of K+ currents in patch-clamp recordings. These findings demonstrate for the first time long-term neuron-glia interactions in the retina of BDV-infected rats. Moreover, the data contribute to our knowledge on structural and functional alterations accompanying persisting virus infection in the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barron, K. D., Dentinger, M. P., Krohel, G., Easton, S. K. & Mankes, R. (1986) Qualitative and qantitative ultrastructural observation on retinal ganglion cell layer of rat after intraorbital optic nerve crush. Journal of Neurocytology 16, 345–362.

    Google Scholar 

  • Bautista, J. R., Rubin, S. A., Moran, T. H., Schwartz, G. J. & Carbone, K. M. (1995) Developmental injury to the cerebellum following perinatal Borna disease virus infection. Developmental Brain Research 90, 45–53.

    Google Scholar 

  • Bautista, J. R., Schwartz, G. J., de la Torre, J. C., Moran, T. H. & Carbone, K. M. (1994) Early and persistent abnormalities in rats with neonatally acquired Borna disease virus infection. Brain Research Bulletin 34, 31–36.

    Google Scholar 

  • Bignami, A. & Dahl, D. (1979) The radial glia of Müller in the rat retina and their response to injury. An immunofluorescence study with antibodies to the glial fibrillary acidic (GFA) protein. Experimental Eye Research 28, 63–69.

    Google Scholar 

  • Billard, J. N., Ly, C., Phillips, T. R. & de la Torre, J. C. (2000) Borna disease virus persistence causes inhibtion of glutamate uptake by feline primary cortical astrocytes. Journal of Virology 74, 10438–10446.

    Google Scholar 

  • Bilzer, T. & Stitz, L. (1993) Brain cell lesions in Borna disease are mediated by T cells. Archives of Virology (Suppl. 7), 163–168.

    Google Scholar 

  • Bilzer, T. & Stitz, L. (1994) Immune-mediated brain atrophy. CD8+ T cells contribute to tissue destruction during Borna disease. Journal of Immunology 163, 818–823.

    Google Scholar 

  • BjÖrklund, H., Bignami, A. & Dahl, D. (1985) Immunohistochemical demonstration of glial fibrillary acidic protein in normal rat Müller glia and retinal astrocytes. Neuroscience Letters 54, 363–368.

    Google Scholar 

  • Bode, L., DÜrrwald, R. & Ludwig, H. (1994) Borna disease virus infection in cattle associated with fatal neurological disease. Veterinary Record 135, 283–284.

    Google Scholar 

  • Bringmann, A., Francke, M., Pannicke, T., Biedermann, B., Faude, F., Enzmann, V., Wiedemann, P., Reichelt, W. & Reichenbach, A. (1999) Human Müller glial cells: Altered potassium channel activity in proliferative vitreoretinopathy. Investigative Ophthalmology & Visual Sciences 40, 3316–3323.

    Google Scholar 

  • Carbone, K. M., Duchala, C. S., Griffin, J. W., Kincaid, A. L. & Narayan, O. (1987) Pathogenesis of Borna disease in rats. Evidence that intra-axonal spread is the mayor route for virus dissemination and the determinat for disease incubation. Journal of Virology 61, 3431–3440.

    Google Scholar 

  • Davis, E. J., Foster, T. D. & Thomas, W. E. (1994) Cellular forms and functions of brain microglia. Brain Research Bulletin 34, 73–78.

    Google Scholar 

  • de la Torre, J. C. (1994) Molecular biology of Borna disease virus: Prototype of a new group of animal viruses. Journal of Virology 68, 7669–7675.

    Google Scholar 

  • Drrwald, R. & Ludwig, H. (1997) Borna disease virus (BDV), a (zoonotic?) worldwide pathogen. A review of the history of the disease and the virus infection with comprehensive bibliography. Journal of Veterinary Medicine 44, 147–184.

    Google Scholar 

  • Felmy, F., Pannicke, T., Richt, J. A., Reichenbach, A. & Guenther, E. (2001) Electrophysiological properties of rat retinal Mueller (glial) cells in postnatally developing and in pathologically altered retinae. Glia 34, 190–199.

    Google Scholar 

  • Floderus, S. (1944) Untersuchungenüber den Bau der menschlichen Hypophyse mit besonderer berücksichtigung der mikromorphologischen Verhältnisse. Acta Pathologica et Microbiologica Scandinavica (Suppl. 53).

  • Francke, M., Pannicke, T., Biedermann, B., Faude. F., Wiedemann, P., Reichenbach, A. & Reichelt, W. (1997) Loss of inwardly rectifying potassium currents by human retinal glial cells in diseases of the eye. Glia 20, 210–218.

    Google Scholar 

  • Fulcrand, J. & Privat, A. (1977) Neuroglial reactions secondary to wallerian degeneration in the optic nerve of the postnatal rat: Ultrastructural and quantitative study. Journal of Comparative Neurology 176, 189–224.

    Google Scholar 

  • Gehrmann, J., Schoen, S. W. & Kreutzberg, G. W. (1991) Lesion of the rat entorhinal cortex leads to rapid microglial reaction in the dendate gyrus: A light and electron microscopical study. Acta Neuropathologica 82, 442–455.

    Google Scholar 

  • Geiß, V. (1988) Licht-und elektronenmikroskopische Untersuchungen zur Pathogenese der experimentellen Bornavirus-Retinitis der Lewis-Ratte. Inaugural-Dissertation (Dr. med. vet.) Justus-Liebig-Universität Giessen, Germany.

    Google Scholar 

  • Geiß, V., Frese, K., Morales, J. A., Ojok, L. & Herzog, S. (1990) Borna disease virus-induced retinitis in Lewis rats-an immune-mediated retinopathy. Lens and Eye Toxicity Research 7, 741–751.

    Google Scholar 

  • Germer, A., Janke, C., Mack, A., Enzmann, V. & Reichenbach, A. (1997) Modification of glutamine synthetase expression by mammalian Müller (glial) cells in retinal organ cultures. NeuroReport 8, 3067–3072.

    Google Scholar 

  • Gies, U., Bilzer, T., Stitz, L. & Staiger, J. F. (1998) Disturbance of the cortical cholinergic innervation in Borna disease prior to encephalitis. Brain Pathology 8, 39–48.

    Google Scholar 

  • Giulian, D. (1987) Ameboid microglia as effectors of inflammation in the central nervous system. Journal of Neuroscience Research 18, 165–171.

    Google Scholar 

  • Gonzalez-Dunia, D., Cubitt, B. & de la Torre, J. C. (1998) Mechanism of Borna disease virus entry into cells. Journal of Virology 72, 783–788.

    Google Scholar 

  • Gonzales-Dunia, D., Sauder, C. & De La Torre, J. C. (1997) Borna disease virus and the brain. Brain Research Bulletin 44, 647–664.

    Google Scholar 

  • Gonzalez-Dunia, D., Watanabe, M., Syan, S., Mallory, M., Masliah, E. & de la Torre, J. C. (2000) Synaptic pathology in Borna disease virus persistent infection. Journal of Virology 74, 3441–3448.

    Google Scholar 

  • Gosztonyi, G., Dietzschold, B., Kao, M., Rupprecht, C. E., Ludwig, H. & Koprowski, H. (1993) Rabies and Borna disease. A comparative pathogenetic study of two neurovirulent agents. Laboratory Investigation 68, 285–295.

    Google Scholar 

  • Gosztonyi, G. & Ludwig, H. (1995) Borna disease-neuropathology and pathogenesis. In Borna disease. In Current Topics in Immunology and Microbiology, Vol. 190 (edited by Koprowski, H. & Lipkin, W. I.) pp. 39–73. Berlin: Springer.

    Google Scholar 

  • Grosche, J., HÄrtig, W., Reichenbach, A. (1995) Expression of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS), and bcl-2 protooncogene protein byMüller (glial) cells in retinal light damage of rats. Neuroscience Letters 185, 119–122.

    Google Scholar 

  • Hallensleben, W., Schwemmle, M., Hausmann, J., Stitz, L., Volk, B., Pagenstecher, A. & Staeheli, P. (1998) Borna disease virus-induced neurological disorder in mice: Infection of neonates results in immunpathology. Journal of Virology 72, 4386–4397.

    Google Scholar 

  • Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, J. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Archiv 391, 85–100.

    Google Scholar 

  • HÄrtig, W., Grosche, J., Distler, C., Grimm, D., El-Hifnawi, E. & Reichenbach, A. (1995) Alterations of Müuller (glial) cells in dystrophic retinae of RCS rats. Journal of Neurocytology 24, 507–517.

    Google Scholar 

  • Herden, C., Herzog, S., Wehner, T., Zink, C., Richt, J. A. & Frese, K. (1998) Comparison of different methods of diagnosing Borna disease in horses post mortem. Proceedings of the 8th Equine Infectious Diseases Conference 1998, Dubai.

  • Herzog, S. & Rott, R. (1980) Replication of Borna disease virus in cell cultures. Medical Microbiology and Immunology (Berlin) 168, 163–168.

    Google Scholar 

  • Herzog, S., Wonigeit, K., Frese, K., Hedrich, J. H. & Rott, R. (1985) Effect of Borna disease virus infection of athymic rats. Journal of General Virology 66, 503–508.

    Google Scholar 

  • Hirano, N., Kao, M. & Ludwig, H. (1983) Persistent, tolerant or subactue infection in Borna disease virusinfected rats. Journal of General Virology 64, 1621–1630.

    Google Scholar 

  • Kacza, J., HÄrtig, W. & Seeger, J. (1997) Oxygen enriched photoconversion of fluorescent dyes by means of a closed conversion chamber. Journal of Neuroscience Methods 71, 225–232.

    Google Scholar 

  • Kacza, J. & Seeger, J. (1997) Transcellular labelling of activated retinal microglia following transection of the optic nerve. Inflammation Research 46, 430–433.

    Google Scholar 

  • Kacza, J., Vahlenkamp, T. W., Enbergs, H., Richt, J. A., Germer, A., Kuhrt, H., Reichenbach, A., MÜller, H., Herden, C., Stahl, T. & Seeger, J. (2000) Neuron-glia interactions in the rat retina infected by Borna disease virus. Archives of Virology 145, 127–147.

    Google Scholar 

  • Kreutzberg, G. W. (1996) Microglia: A sensor for pathological events in the CNS. Trends in Neuroscience 19, 312–318.

    Google Scholar 

  • Krey, H. F., Ludwig, H. & Boschek, C. (1979a) Multifocal retinopathy in Borna disease virus infected rabbits. American Journal of Ophthalmology 87, 167–164.

    Google Scholar 

  • Krey, H. F., Ludwig, H. & Rott, R. (1979b) Spread of infectious virus along the optic nerve into the retina in Borna disease virus-infected rabbits. Archives of Virology 61, 283–288.

    Google Scholar 

  • Lavail, M. M. & Reif-Lehrer, L. (1971) Glutamine synthetase in the normal and dystrophic mouse retina. Journal of Cell Biology 51, 348–354.

    Google Scholar 

  • Lawson, L. J., Frost, L., Risbridger, J., Fearn, S. & Perry, V. H. (1994) Quantification of the mononuclear phagocyte response to Wallerian degeneration of the optic nerve. Journal of Neurocytology 23, 729–744.

    Google Scholar 

  • Lewis, G. P., Erickson, P. A., GuÉrin, C. J., Anderson, D. H. & Fisher, S. K. (1989) Changes in the expression of specific Müller cell proteins during long-term retinal detachment. Experimental Eye Research 49, 93–111.

    Google Scholar 

  • Ludwig, H. & Bode, L. (1997) The neuropathologenesis of Borna disease virus infection. Intervirology 40, 185–197.

    Google Scholar 

  • Ludwig, H. & Bode, L. (2000) Borna disease virus, new aspects on infection, disease, diagnosis and epidemiology. Revue Scientifique et Technique 19, 259–288.

    Google Scholar 

  • Lundgren, A. L., Czech, G., Bode, L. & Ludwig, H. (1993) Natural Borna disease in domestic animals other than horses and sheep. Journal ofVeterinary Medicine 40, 298–303.

    Google Scholar 

  • MacFarlane, S. N. & Sontheimer, H. (1997) Electrophysiological changes that accompany reactive gliosis in vitro. Journal of Neuroscience 17, 7316–7329.

    Google Scholar 

  • Marty, S., Dusart, I. & Peschanski, M. (1991) Glial changes following an excitotoxic lesion in the CNS I. Microglia/ macrophages. Neuroscience 45, 529–539.

    Google Scholar 

  • Moore, S. & Thanos, S. (1996) The concept of microglia in relation to central nervous system disease and regeneration. Progress in Neurobiology 48, 441–460.

    Google Scholar 

  • Morales, J. A., Herzog, S., Kompter, C., Frese, K. & Rott, R. (1988) Axonal transport of Borna disease virus along olfactory pathways in spontoneously and experminetal infected rats. Medical Microbiology and Immunology 177, 51–68.

    Google Scholar 

  • Nakajima, K. & Kohsaka, S. (1993) Functional roles of microglia in the brain. Neuroscience Research 17, 187–203.

    Google Scholar 

  • Nakamura, Y., Watanabe, M., Kamitani, W., Taniyama, H., Nakaya, T., Nishimura, Y., Tsujimoto, H., Machida, S. & Ikuta, K. (1999) High prevalence of Borna disease virus in domestic cats with neurological disorders in Japan. Veterinary Microbiology 70, 163–169.

    Google Scholar 

  • Narayan, O., Herzog, S., Frese, K., Scheefers, H. & Rott, R. (1983a) Pathogenesis of Borna Disease in Rats: Immune-mediated viral ophthalmoencephalopathy causing blindness and behavioral abnormalities. Journal of Infectious Diseases 148, 305–316.

    Google Scholar 

  • Narayan, O., Herzog, S., Frese, K., Scheffers, H. & Rott, R. (1983b) Behavioural disease in rats caused by immunpathological responces to persistent Borna disease virus in the brain. Science 220, 1401–1403.

    Google Scholar 

  • Noell, W. K. (1965) Aspects of experimental and hereditary retinal degeneration. In Biochemistry of the Eye (edited by Graymore, C. N.) pp. 51–72. London: Academic Press.

    Google Scholar 

  • Pannicke, T., Weick, M., Uckermann, O., Wheeler-Schilling, T., Fries, J. E., Reichel, M. B., Mohr, C., Stahl, T., Fluess, M., Kacza, J., Seeger, J., Richt, J.A. & Reichenbach, A. (2001) Electrophysiological alterations and upregulation of ATP receptors in retinal glial Müller cells from rats infected with the Borna disease virus. Glia 35, 213–223.

    Google Scholar 

  • Penfold, P. L. & Provis, J. M. (1986) Cell death in the development of the human retina: Phagocytosis of pycnotic and apoptotic bodies by retinal cells. Graefe's Archive for Clinical and Experimental Ophthalmology 224, 549–553.

    Google Scholar 

  • Pyper, J. M. & Gartner, A. E. (1997) Molecular basis for the differential subcellular localization of the 38-and 39-kilodalton structural proteins of Borna disease virus. Journal of Virology 71, 5133–5139.

    Google Scholar 

  • Reichenbach, A. & Birkenmeyer, G. (1984) Preparation of isolated Müller cells of the mammalian (rabbit) retina. Zeitschrift fuer mikroskopisch-anatomische Forschung 98, 789–792.

    Google Scholar 

  • Reichenbach, A., Faude, F., Enzmann, V., Bringmann, A., Pannicke, T., Francke, M., Biedermann, B., Stolzenburg, J. U., Skatchkov, S. N., Heinemann, U., Wiedemann, P. & Reichelt, W. (1997) The Müller (glial) cell in normal and diseased retina. A case for single-cell electrophysiology. Ophthalmic Research 29, 326–340.

    Google Scholar 

  • Reichenbach, A., Schnitzer, J., Friedrich, A., Knothe, A. K. & Henke, A. (1991) Development of the rabbit retina: II. Müller cells. Journal of Comparative Neurology 311, 33–44.

    Google Scholar 

  • Richt, J. A., Pfeuffer, I., Christ, M., Frese, K., Bechter, K. & Herzog, S. (1997) Borna disease virus infection in animals and humans. Emerging Infectious Diseases 3, 343–352.

    Google Scholar 

  • Richt, J. A., Vandewoude, S., Zink, M. C., Clements, J. E., Herzog, S., Stitz, L., Rott, R. & Narayan, O. (1992) Infection with Borna disease virus: Molecular and immunobiological characterization of the agent. Clinical Infectious Diseases 14, 1240–1250.

    Google Scholar 

  • Rubin, S. A., Sylves, P., Vogel, M., Pletnikov, M., Moran, T. H., Schwartz, G. J. & Carbone, K. M. (1999) Borna disease virus-induced hippocampal dentate gyrus damage is associated with spatial learning and memory deficits. Brain Research Bulletin 48, 23–30.

    Google Scholar 

  • Sauder, C. & de la Torre, J. C. (1999) Cytokine expression in the rat central nervous system following perinatal Borna disease virus infection. Journal of Neuroimmunology 96, 29–45.

    Google Scholar 

  • Schnitzer, J. & Scherer, J. (1990) Microglial cell responses in the rabbit retina following transection of the optic nerve. Journal of Comparative Neurology 302, 779–791.

    Google Scholar 

  • Skatchkov, S. N., Vyklicky, L., Clasen, T. & Orkand, R. K. (1996) Effect of cutting the optic nerve on K+ currents in endfeet of Müller cells isolated from frog retina. Neuroscience Letters 208, 81–84.

    Google Scholar 

  • Stitz, L., Krey, H. & Ludwig, H. (1980) Borna disease in rhesus monkeys as a model for uveocerebral symptoms. Journal of Medical Virology 6, 333–340.

    Google Scholar 

  • Stolzenburg, J. U., Haas, J., HÄrtig, W., Paulke, B. R., Wolburg, H., Reichelt, W., Chao, T. I., Wolff, J. R. & Reichenbach, A. (1992) Phagocytosis of different kinds of latex beads by rabbit retinal Müller (glial) cells in vitro. Journal fuer Hirnforschung 33, 557–564.

    Google Scholar 

  • Streit, W. J. & Kreutzberg, G. W. (1988) Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. Journal of Comparative Neurology 268, 248–263.

    Google Scholar 

  • Thanos, S., Kacza, J., Seeger, J. & Mey, J. (1994) Old dyes for new scopes: The phagocytosis dependent long term fluorescence labelling of microglial cells in vivo. Trends in Neuroscience 17, 177–182.

    Google Scholar 

  • Thanos, S., Mey, J. & Wild, M. (1993) Treatment of the adult retina with microglia suppressing factors retards axotomy induced neuronal degradation and enhances axonal regeneration in vivo and in vitro. Journal of Neuroscience 13, 455–466.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kacza, J., Mohr, C., Pannicke, T. et al. Changes of the organotypic retinal organization in Borna virus-infected Lewis rats. J Neurocytol 30, 801–820 (2001). https://doi.org/10.1023/A:1019641404940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019641404940

Keywords

Navigation