Skip to main content
Log in

Climate Suitability: For Stable Malaria Transmission in Zimbabwe Under Different Climate Change Scenarios

  • Published:
Global Change and Human Health

Abstract

As climate is one factor determining the potential range of malaria, climate change may work with or against efforts to bring malaria under control. We developed a model of future climate suitability for stable Plasmodium falciparum malaria transmission in Zimbabwe. Current climate suitability for stable malaria transmission is based on the MARA/ARMA model of climatic constraints on the survival and development of the Anopheles vector and the Plasmodium falciparum malaria parasite. We explored potential future geographic distributions of malaria using sixteen projections of climate in 2100. The results suggest that, assuming no future human-imposed constraints on malaria transmission, changes in temperature and precipitation could alter the geographic distribution of malaria in Zimbabwe, with previously unsuitable areas of dense human population becoming suitable for transmission. Among all scenarios, the highlands become more suitable for transmission, while the lowveld and areas currently limited by precipitation show varying degrees of change, depending on climate sensitivity and greenhouse gas emission stabilization scenarios, and depending on the general circulation model used. The methods employed can be used within or across other African countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous. Blair Research Institute 1996 Annual Report: Epidemiology of Plasmodium falciparum drug resistance in Zimbabwe. Harare, Zimbabwe: Blair Research Institute, 1995.

    Google Scholar 

  2. Murray, C and A Lopez. The Global Burden of Disease. Boston: Harvard University Press, 1996.

    Google Scholar 

  3. Snow, RW, M Craig, U Deichmann and K Marsh. Estimating mortality, morbidity, and disability due to malaria among Africa's non-pregnant population. Bulletin of the World Health Organization 1999; 77(8): 624-40.

    PubMed  CAS  Google Scholar 

  4. Breman, J. The ears of the hippopotamus: manifestations, determinants and estimates of the malaria burden. American Journal of Tropical Medicine and Hygiene 2001; 64(suppl 1): 76-84.

    Google Scholar 

  5. Githeko, AK and W Ndegwa. Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Global Change and Human Health 2001; 2(1): 54-63.

    Article  Google Scholar 

  6. Greenwood, B and T Mutabingwa. Malaria in 2002. Nature 2002; 415: 670-2.

    Article  PubMed  CAS  Google Scholar 

  7. Martens, P, et al. Climate change and future populations at risk of malaria. Global Environmental Change 1999; 9: S89-S107.

    Article  Google Scholar 

  8. IPCC. Climate Change 2001: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report. eds. McCarthy J, Canziani OF, Leary N, Dockken D, White KS. Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  9. IPCC. Climate Change 2001: The scientifi c basis. Contribution of Working Group I to the Third Assessment Report. eds. Houghton JT et al. Cambridge: Cambridge University Press, 2001.

    Google Scholar 

  10. Janssen, M and P Martens. Modeling malaria as a complex adaptive system. Artifi cial Life 1997; 3: 213-36.

    Article  CAS  Google Scholar 

  11. Chan, NY, KL Ebi, F Smith, TF Wilson and AE Smith. An Integrated Assessment Framework for Climate Change and Infectious Diseases. Environmental Health Perspectives 1999; 107(5): 329-37.

    PubMed  CAS  Google Scholar 

  12. Lindsay, SW and WJM Martens. Malaria in the African highlands: past, present and future. WHO Bulletin OMS 1998; 76: 33-45.

    CAS  Google Scholar 

  13. Craig, MH, RW Snow and Dl Sueur. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitology Today 1999; 15(3): 105-11.

    Article  PubMed  CAS  Google Scholar 

  14. MARA/ARMA. Towards an atlas of malaria risk in Africa. Durban: MARA, 1998.

    Google Scholar 

  15. Schlesinger, ME and LJ Williams. COSMIC-Country specifi c model for intertemporal climate. Palo Alto: EPRI, 1997.

    Google Scholar 

  16. ESRI. ArcView 3.2. Redlands, CA: ESRI, 2001.

    Google Scholar 

  17. Hutchinson, M, H Nix, J McMahon and K Ord. Africa: a topographic and climatic database. Canberra: Centre for Resource and Environmental Studies Australian National University, 1995.

    Google Scholar 

  18. Lindesay, JA. South African rainfall, the Southern Oscillation and a Southern Hemisphere semi-annual cycle. Journal of Climatology 1988; 8: 17-30.

    Google Scholar 

  19. Ropelewski, CF and MS Halpert. Global and regional scale precipitation patterns associated with the El Niño-Southern Oscillation. Monthly Weather Review 1987; 115: 1606-26.

    Article  Google Scholar 

  20. Hulme, M, R Doherty, T Ngara, M New and D Lister. African Climate Change: 1900-2100. Climate Research 2001; 17: 145-68.

    Google Scholar 

  21. Unganai, LS. Historic and future climatic change in Zimbabwe. Climate Research 1996; 6: 137-45.

    Google Scholar 

  22. Taylor, P and SL Mutambu. A review of the malaria situation in Zimbabwe with special reference to the period 1972-1981. Transactions of the Royal Society of Tropical Medicine and Hygiene 1986; 80: 12-9.

    Article  PubMed  CAS  Google Scholar 

  23. Williams, L, D Shaw and R Mendelsohn. Evaluating GCM output with impact models. Climatic Change 1998; 39: 111-33.

    Article  Google Scholar 

  24. Mendelsohn, R, M Schlesinger and L Williams. Comparing impacts across climate models. Integrated Assessment 2000; 1: 37-48.

    Article  Google Scholar 

  25. McFarlane, NA, GJ Boer, J-P Blanchet and M Lazare. The Canadian Climate Centre Second-Generation General Circulation Model and its equilibrium climate. Journal of Climate 1992; 5: 1013-77.

    Article  Google Scholar 

  26. Wilson, CA and JFB Mitchell. A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean. Journal of Geophysical Research 1987; 92(D11): 13315-43.

    CAS  Google Scholar 

  27. Hansen, J, et al. Global climate changes as forecast by Goddard Institute for Space Studies Three-Dimensional Model. Journal of Geophysical Research 1988; 93(D8): 9341-64.

    Article  CAS  Google Scholar 

  28. Henderson-Sellers, A, et al. Tropical deforestation: modeling local-to regional-scale climate change. Journal of Geophysical Research 1993; 98(D4): 7289-315.

    Google Scholar 

  29. Watson, ER, M Zinyowera, R Moss and D Dokken. The Regional Impacts of Climate Change: An Assessment of Vulnerability. A special report of IPCC Working Group II. Cambridge: Cambridge University Press, 1998.

    Google Scholar 

  30. Reiter, P. Climate change and mosquito-borne disease. Environmental Health Perspectives 2001; 109: 141-61.

    PubMed  Google Scholar 

  31. Trape, J. The public health impact of chloroquine resistance in Africa. American Journal of Tropical Medicine and Hygiene 2001; 64(suppl 1): 12-7.

    PubMed  CAS  Google Scholar 

  32. Trape, J, et al. Malaria in and urbanization in Central Africa: the example of Brazzaville. Part B: Pernicious attacks and mortality. Transactions of the Royal Society of Tropical Medicine and Hygiene 1987; 81(suppl 2): 34-42.

    PubMed  Google Scholar 

  33. Lindblade, K, E Walker, A Onapa, J Katungu and M Wilson. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Tropical Medicine and International Health 2000; 5: 263-74.

    Article  PubMed  CAS  Google Scholar 

  34. Remme, J, F Binka and D Nabarro. Toward a framework and indicators for monitoring Roll Back Malaria. American Journal of Tropical Medicine and Hygiene 2001; 64(suppl 1): 1-11.

    Google Scholar 

  35. Gallup, J and J Sachs. The economic burden of malaria. American Journal of Tropical Medicine and Hygiene 2001; 64(suppl 1): 85-96.

    PubMed  CAS  Google Scholar 

  36. Rogers, DJ and SE Randolph. The global spread of malaria in a future, warmer world. Science 2000; 289: 1763-9.

    Article  PubMed  CAS  Google Scholar 

  37. Makono, R and S Sibanda. Review of the prevalence of malaria in Zimbabwe with specifi c reference to parasite drug resistance (1984-96). Transactions of the Royal Society of Tropical Medicine and Hygiene 1999; 93(5): 449-52.

    Article  PubMed  CAS  Google Scholar 

  38. Freeman, T. Malaria: Zimbabwe 1995. A review of the epidemiology of malaria transmission and distribution in Zimbabwe and the relationship of malaria outbreaks to preceding meteorological conditions. Harare, Zimbabwe: GTZ, 1995.

    Google Scholar 

  39. Freeman, T and M Bradley. Temperature is predictive of severe malaria years in Zimbabwe. Transactions of the Royal Society of Tropical Medicine and Hygiene 1996; 90: 232.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartman, J., Ebi, K., McConnell, K.J. et al. Climate Suitability: For Stable Malaria Transmission in Zimbabwe Under Different Climate Change Scenarios. Global Change & Human Health 3, 42–54 (2002). https://doi.org/10.1023/A:1019621231796

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019621231796

Keywords

Navigation