Skip to main content
Log in

Rigorous Stochastic Averaging at a Center with Additive Noise

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

We consider a random perturbation of a two-dimensional Hamiltonian system with an isolated elliptic fixed point; that is, a center. Under an appropriate change of time, we identify a reduced stochastically-averaged model. We give a rigorous proof of averaging at the center. Our main technique is to use the martingale problem. Our formulation of the result is in a sufficiently abstract setting that it agrees with more complicated averaging results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariaratnam, S.T., ‘Bifurcations in nonlinear stochastic systems’, In: Holmes, P.J. (ed.) New Approaches to Nonlinear Problems in Dynamics, SIAM Publications, Philadelphia, 1980, pp. 470–474.

    Google Scholar 

  2. Ariaratnam, S.T. and Srikantaiah, T.K., ‘Parametric instabilities in elastic structures under stochastic loading’, J. Struct. Mech. 6(4) (1978) 349–365.

    Google Scholar 

  3. Arnold, L., Sri Namachchivaya, N. and Schenk, K.L., ‘Toward an understanding of stochastic Hopf bifurcations: a case study’, Int. J. Bifur. Chaos 6(11) (1996) 1947–1975.

    Google Scholar 

  4. Borodin, A.N., ‘A limit theorem for solutions of differential equations with random right-hand side’, Theory Probab. Appl. 22(3) (1977) 482–497.

    Google Scholar 

  5. Boothby, William M., An Introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, San Diego, 1986.

    Google Scholar 

  6. Ethier, S.N. and Kurtz, T.G., Markov Processes: Characterization and Convergence, Wiley, New York, 1986.

    Google Scholar 

  7. Feller, W., ‘On differential operators and boundary conditions’, Commun. Pure Appl. Math. 8 (1955) 203–216.

    Google Scholar 

  8. Feller, W., ‘Generalized second order differential operators and their lateral conditions’, Illinois J. Math. 1 (1957) 459–504.

    Google Scholar 

  9. Freidlin, M.I. and Wentzell, A.D., Random Perturbations of Hamiltonian Systems, American Mathematical Society, Providence, RI, 1994.

    Google Scholar 

  10. Freidlin, M.I. and Weber, M., ‘Random perturbations of nonlinear oscillators’, Ann. Probab. 26(3) 925–967.

  11. Gikhman, I.I.,’On the theorem of N.N. Bogolyubov’, Ukrain. Mat. Zh. 4(2) (1952) 215–218.

    Google Scholar 

  12. Goresky, M. and MacPherson, R., Stratified Morse Theory, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  13. Karatzas, I. and Shreve, S.E., Brownian Motion and Stochastic Calculus, Springer-Verlag, New York, 1988.

    Google Scholar 

  14. Khas'minskii, R.Z., ‘On stochastic processes defined by differential equations with a small parameter’, Theory Probab. Appl. 11(2) (1966) 211–228.

    Google Scholar 

  15. Khas'minskii, R.Z., ‘A limit theorem for solutions of differential equations with random right-hand-side’, Theory Probab. Appl. 11(3) (1966) 390–406.

    Google Scholar 

  16. Khas'minskii, R.Z., ‘On the principles of averaging for Itô stochastic differential equations’, Kybernetica 4 (1968) 260–279.

    Google Scholar 

  17. Sri Namachchivaya, N., ‘Hopf bifurcation in the presence of both parametric and external stochastic excitation’, ASME J. Appl. Mech. 55(4) (1988), 923–930.

    Google Scholar 

  18. Sri Namachchivaya, N., ‘Stochastic bifurcation’, Appl. Math. Comput. 38 (1990) 101–159.

    Google Scholar 

  19. Sri Namachchivaya, N. and Ariaratnam, S.T., ‘Stochastically perturbed Hopf bifurcation’, Int. J. Non-Linear Mech. 22(5) (1987) 363–372.

    Google Scholar 

  20. Sri Namachchivaya, N. and Lin, Y.K., ‘Application of stochastic averaging for system with high damping’, Probab. Eng. Mech. 3 (1988) 185–196.

    Google Scholar 

  21. Sri Namachchivaya, N., Sowers, R. and Vedula, L., ‘Stochastic averaging on graphs: noisy Duffing-van der Pol equation’, In: Broomhead, D.S., Luchinskaya, E.A., McClintock, P.V.E. and Mullin, T. (eds), Stochastic and Chaotic Dynamics in the Lakes, American Institute of Physics, Melville, NY, USA, 2000, pp. 255–265.

    Google Scholar 

  22. Sri Namachchivaya, N., Sowers, R. and Vedula, L., ‘Nonstandard reduction of noisy Duffing-van der Pol equation’, Dyn. Syst. 16 (2001), 201–224.

    Google Scholar 

  23. Papanicolaou, G.C. and Kohler, W., ‘Asymptotic theory of mixing stochastic ordinary differential equations’, Commun. Pure Appl. Math. 27 (1974) 641–668.

    Google Scholar 

  24. Papanicolaou, G.C. and Kohler, W., ‘Asymptotic analysis of determinate and stochastic equations with rapidly varying components’, Commun. Math. Phys. 46 (1976) 217–232.

    Google Scholar 

  25. Papanicolaou, Stroock, D.W. and Varadan, S.R.S., ‘Martingale approach to some limit theorems’, In: Ruelle, D. (ed.), Statistical Mechanics and Dynamical Systems, Duke University Mathematics Series III, (VI.1) (1976) 217–232.

  26. Sowers, R.B., ‘Stochastic averaging with a flattened Hamiltonian; a Markov process on a stratified space (whiskered sphere)’, Trans–AMS 354 (2002) 853–900.

    Google Scholar 

  27. Stratonovich, R.L., Topics in the Theory of Random Noise, Vol. 1., Gordon and Breach, New York, 1963.

    Google Scholar 

  28. Stroock, D.W. and Varadan, S.R.S., ‘Diffusion processes with continuous coefficients I’, Commun. Pure Appl. Math. 22 (1969) 345–400.

    Google Scholar 

  29. Stroock, D.W. and Varadan, S.R.S., ‘Diffusion processes with continuous coefficients II’, Commun. Pure Appl. Math. 22 (1969) 479–530.

    Google Scholar 

  30. Stroock, D.W. and Varadan, S.R.S., Multidimensional Diffusion Processes, Vol. 233, Springer Verlag, Berlin, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sri Namachchivaya, N., Sowers, R.B. Rigorous Stochastic Averaging at a Center with Additive Noise. Meccanica 37, 85–114 (2002). https://doi.org/10.1023/A:1019614613583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019614613583

Navigation