Skip to main content
Log in

Hyperbolic Approximation of the Navier-Stokes Equations for Viscous Mixed Flows

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Simplified two-dimensional Navier-Stokes equations of the hyperbolic type are derived for viscous mixed (with transition through the sonic velocity) internal and external flows as a result of a special splitting of the pressure gradient in the predominant flow direction into hyperbolic and elliptic components. The application of these equations is illustrated with reference to the calculation of Laval nozzle flows and the problem of supersonic flow past blunt bodies. The hyperbolic approximation obtained adequately describes the interaction between the stream and surfaces for internal and external flows and can be used over a wide Mach number range at moderate and high Reynolds numbers. Examples of the calculation of viscous mixed flows in a Laval nozzle with large longitudinal throat curvature and in a shock layer in the neighborhood of a sphere and a large-aspect-ratio hemisphere-cylinder are given. The problem of determining the drag coefficient of cold and hot spheres is solved in a new formulation for supersonic air flow over a wide range of Reynolds numbers. In the case of low and moderate Reynolds numbers a drag reduction effect is detected when the surface of the sphere is cooled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. U. G. Pirumov and G. S. Roslyakov, Nozzle Gas Flows [in Russian], Moscow State University Press, Moscow (1978).

    Google Scholar 

  2. N. S. Kokoshinskaya, B. M. Pavlov, and V. M. Paskonov, Numerical Investigation of Supersonic Viscous Gas Flows past Bodies [in Russian], Moscow State University Press, Moscow (1980).

    Google Scholar 

  3. O. M. Belotserkovskii, Numerical Simulation in Continuum Mechanics [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  4. Yu. V. Lapin and M. Kh. Strelets, Internal Flows of Gaseous Mixtures [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  5. Yu. P. Golovachev,Numerical Simulation of Viscous Shock Layer Gas Flows [in Russian], Nauka, Moscow (1996).

    Google Scholar 

  6. Yu. V. Lapin, O. A. Hekhamkina, V. A. Pospelov et al., “Numerical simulation of internal flows of viscous chemically reacting gas mixtures,” in: Advances in Science and Engineering. Complex and Special Branches of Mechanics, Vol. 3 [in Russian], VINITI, Moscow (1988), P. 81.

    Google Scholar 

  7. E. A. Gershbein, S. V. Peigin, and G. A. Tirskii, “Supersonic flow past bodies at low and moderate Reynolds numbers,” in: Advances in Science and Engineering. Fluid Dynamics, Vol. 19. [in Russian], VINITI, Moscow (1985), P. 3.

    Google Scholar 

  8. G. A. Tirskii and S. V. Utyuzhnikov, “Modern gasdynamicmodels of external and internal problems of super-and hypersonic aerodynamics,” Modelirivanie v Mekhanike, 7, No. 2, 5 (1993).

    Google Scholar 

  9. G. A. Tirskii, “Continuum models in problems of supersonic rarefied gas flow past blunt bodies,” Prikl. Mat. Mekh., 61, 903 (1997).

    Google Scholar 

  10. S. G. Rubin and J. C. Tannehill, “Parabolized/reduced Navier-Stokes computational techniques,” Annu. Rev. Fluid. Mech., 24, 117 (1992).

    Google Scholar 

  11. S. G. Chernyi, “Choice of the coordinate system for the numerical solution of simplified Navier-Stokes equations by means of a marching method,” in: Numerical Methods of Continuum Mechanics, Vol. 13 [in Russian], Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk (1982), P. 132.

    Google Scholar 

  12. C. A. J. Fletcher, Computational Techniques for Fluid Dynamics, Vol. 2, Springer-Verlag, Berlin (1988).

    Google Scholar 

  13. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Vol. 2, McGraw-Hill, New York (1984).

    Google Scholar 

  14. V. M. Kovenya and N. N. Yanenko, Splitting Method in Gas Dynamic Problems [in Russian], Nauka, Novosibirsk (1981).

    Google Scholar 

  15. J. C. Williams, “Viscous compressible and incompressible flows in slender channels,” AIAA J., 1, 186 (1963).

    Google Scholar 

  16. S. V. Patankar and D. B. Spalding, “A calculation procedure for heat, mass, and momentum transfer in threedimensional parabolic flows,” Intern. J. Heat and Mass Transfer, 15, 1787 (1972).

    Google Scholar 

  17. D. W. Roberts and S. K. Forester, “Parabolic procedure for flows in ducts with arbitrary cross-sections,” AIAA J., 17, 33 (1979).

    Google Scholar 

  18. W. R. Briley, “Numerical method for predicting three-dimensional steady viscous flow in ducts,” J. ComP. Phys., 14, 33 (1979).

    Google Scholar 

  19. J. P. Kreskovsky and S. J. Shamroth, “An implicit marching method for the two-dimensional reduced Navier-Stokes equations at arbitrary Mach number,” ComP. Methods in Appl. Mech. and Engng., 13, 307 (1978).

    Google Scholar 

  20. B. V. Rogov and I. A. Sokolova, “Equations of viscous flows in smooth variable-area channels,” Dokl. Ross. Akad. Nauk, 345, 615 (1995).

    Google Scholar 

  21. B. V. Rogov and I. A. Sokolova, “Asymptotic accuracy of the smooth channel approximation in describing viscous flows,” Dokl. Ross. Akad. Nauk, 357, 190 (1997).

    Google Scholar 

  22. H. K. Cheng, “The blunt-body problem in hypersonic flow at low Reynolds number,” Inst. Aerospace Sci. Paper, No. 63-92 (1963).

  23. A. I. Borodin and S. V. Peigin, “Three-dimensional flows past blunt bodies within the framework of the parabolized viscous shock layer model,” Mat. Modelirovanie, 5, No. 1, 16 (1993).

    Google Scholar 

  24. Y. C. Vigneron, J. V. Rakish, and J. C. Tannehill, “Calculation of supersonic viscous flow over delta wings with sharp subsonic leading edges,” AIAA Paper, No. 78-1137 (1978).

  25. V. L. Kovalev, A. A. Krupnov, and G. A. Tirskii, “Solution of the viscous shock layer equations by means of the simple global iteration method using the pressure gradient and the shape of the shock,” Dokl. Ross. Akad. Nauk, 338, 333 (1994).

    Google Scholar 

  26. S. L. Lawrence, J. C. Tannehill, and D. S. Chaussee, “Upwind algorithm for the parabolized Navier-Stokes equations,” AIAA J., 27, 1175 (1989).

    Google Scholar 

  27. S. G. Karataev and V. N. Koterov, “Numerical method for calculating supersonic viscous gas flows,” Zh. Vychisl. Mat. Matem. Fiz., 30, 586 (1990).

    Google Scholar 

  28. V. I. Kopchenov and I. N. Laskin, “A finite-difference scheme for the numerical solution of the parabolizedNavier-Stokes equations,” Zh. Vychisl. Mat. Matem. Fiz., 36, 126 (1996).

    Google Scholar 

  29. S. Kaushik and S. G. Rubin, “Pressure based flux-split solutions for incompressible and compressible internal flows,” Computers and Fluids, 27, 71 (1998).

    Google Scholar 

  30. M. D. Van Dyke, “Second-order compressible boundary layer theorywith application to blunt bodies in hypersonic flow,” in: Hypersonic Flow Research, Academic Press, New York (1962).

    Google Scholar 

  31. R. T. Davis, M. J. Werle, and S. F. Wornom, “A consistent formulation of compressible boundary-layer theory with second-order curvature and displacement effects,” AIAA J., 8, 1101 (1970).

    Google Scholar 

  32. N. N. Kalitkin, B. V. Rogov and I. A. Sokolova, “Solution of the direct problem in a nozzle by means of iterations in the streamline directions,” Dokl. Ross. Akad. Nauk, 370, 46 (2000).

    Google Scholar 

  33. R. T. Davis, “Numerical solution of the hypersonic viscous shock-layer equations,” AIAA Journal, 8, 843 (1970).

    Google Scholar 

  34. O. M. Belotserkovskii (Ed.), Numerical Investigation of Modern Gas Dynamic Problems [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  35. V. G. Gromov, V. I. Sakharov, and E. I. Fateeva, “Numerical investigation of hypersonic viscous chemically reacting gas flow past blunt bodies,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 177 (1999).

    Google Scholar 

  36. L. I. Sedov, M. P. Mikhailova, G. G. Chernyi, “Effect of viscosity and heat conduction on gas flow behind a strongly curved shock wave,” Vestn. MGU, Ser. Fiz.-Mat. i Estestv. Nauk, No. 3, 95 (1953).

    Google Scholar 

  37. B. V. Rogov and I. A. Sokolova, “Efficient simplified model for internal viscous flow,” AIAA Paper, No. 98-2493 (1998).

  38. N. N. Kalitkin, B. V. Rogov and I. A. Sokolova, “Two-stage marching calculation of viscous flows in the Laval nozzle,” Mat. Modelirovanie, 11, No. 7, 95 (1999).

    Google Scholar 

  39. S. A. Vasil'evskii, G. A. Tirskii, and S. V. Utyuzhnikov, “Numerical method for solving viscous shock layer equations,” Zh. Vychisl. Mat. Matem. Fiz., 27, 741 (1987).

    Google Scholar 

  40. Yu. È. Egorov, M. Kh. Strelets, and M. L. Shur, “Use of the compressibility scaling method for calculating steady-state flows of viscous gases and gas mixtures in Laval nozzles,” Mat. Modelirovanie, 2, No. 10, 3 (1990).

    Google Scholar 

  41. R. F. Cuffel, L. H. Back, and P. F. Massier, “Transonic flowfield in a supersonic nozzle with small throat radius of curvature,” AIAA J., 7, 1364 (1969).

    Google Scholar 

  42. A. I. Borodin and S. V. Peigin, “Numerical investigation of supersonic flow past blunt bodieswithin the framework of the parabolized viscous shock layer model,” Zh. Vychisl. Mat. Matem. Fiz., 36, 158 (1996).

    Google Scholar 

  43. A. N. Lyubimov and V. V. Rusanov, Gas Flows Past Blunt Bodies, Vol. 2 [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  44. R. S. Hickman and W. H. Giedt, “Heat transfer to a hemisphere-cylinder at low Reynolds numbers,” AIAA J., 1, 665 (1961).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogov, B.V., Sokolova, I.A. Hyperbolic Approximation of the Navier-Stokes Equations for Viscous Mixed Flows. Fluid Dynamics 37, 377–395 (2002). https://doi.org/10.1023/A:1019602406021

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019602406021

Keywords

Navigation