Skip to main content
Log in

Physical, Chemical, and Electrochemical Behavior of Boron Oxide in Cryolite-Alumina Melts

  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Preparation of aluminum alloys in an aluminum electrolyzer considerably reduces the cost price of the resulting ligatures. Introduction of new oxides into molten cryolite frequently disturbs the electrolyzer operation. The behavior of boron oxide in molten cryolite and the possibility of stabilizing the electrolyzer operation were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Belyaev, A.I., Fiziko-khimicheskie protsessy pri elektrolize alyuminiya (rol' okislov v alyuminievoi vanne) (Physicochemical Processes in Aluminum Electrolysis (Role of Oxides in Aluminum Bath)), Moscow: Metallurgizdat, 1947.

    Google Scholar 

  2. Karnaukhov, E.N., Kulesh, M.K., Ryzhev, V.A., et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1978, vol. 1, pp. 55-58.

    Google Scholar 

  3. Krymov, A.P., Bugaenko, V.V., Nerubashchenko, V.V., and Chernov, R.V., in Elektrokhimicheskie i termodinamicheskie svoistva ionnykh rasplavov (Electrochemical and Thermodynamic Properties of Ionic Melts), Kiev: Naukova Dumka, 1977, pp. 69-71.

    Google Scholar 

  4. Polyakova, L.P., Bukatova, G.A., Polyakov, E.G., et al., Elektrokhimiya, 1995, vol. 31, no. 12, pp. 1348-1353.

    Google Scholar 

  5. Kuznetsov, S.A., Elektrokhimiya, 1996, vol. 32, no. 7, pp. 829-835.

    Google Scholar 

  6. Devyatkin, S.V., Kaptay, G., Shapoval, V.I., et al., in Refractory Metals in Molten Salts, Kluwer, 1998, 1998, pp. 73-80.

  7. Ray, S.C. and Skyllas-Kazacos, M., Electrochim. Acta, 1992, vol. 37, no. 10, pp. 1787-1796.

    Google Scholar 

  8. Janz, G.J., NISI Properties of Molten Salts: Single Salts and Salts Mixtures Data, New York, 1991, Electronic Version 2.0.

  9. Barin, Ih., Thermodynamic Data of Pure Substances, Weinheim: VCH, 1993.

    Google Scholar 

  10. Kaptay, G., Kohaszat. BVK, 1968, no. 101, pp. 429-436.

  11. Gliesse, P.J.M. and Foster, W.R., Nature, 1962, vol. 195, no. 4836, pp. 69-70.

    Google Scholar 

  12. Pavlikov, V.N., Yurchenko, V.A., Lugovskaya, E.S., et al., Zh. Neorg. Khim., 1974, vol. 19, no. 7, pp. 1597-1600.

    Google Scholar 

  13. Makyta, M., Danek, V., Haarberg, G.M., and Thonstad, J., J. Appl. Electrochem., 1996, vol. 26, no. 4, pp. 319-324.

    Google Scholar 

  14. Anghel, E.M., Pavlatou, E., Balasoiu, M., and Zuca, S., Advance in Molten Salts: From Structural Aspects to Waste Processing, Gaune-Escard, M., Ed., New York: Begell House, 1999, pp. 23-31.

    Google Scholar 

  15. MacDonald, D.D., Transient Techniques in Electrochemistry, New York: Plenum, 1977.

    Google Scholar 

  16. Boer, F.R. de, Boom, R., Mattens, W.C.M., et al., Cohesion in Metals, Amsterdam: North-Holland, 1988, vol. 1.

    Google Scholar 

  17. Makyta, M., Matiasovsky, K., and Fellner, P. Electrochim. Acta, 1984, vol. 29, no. 12, pp. 1653-1657.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devyatkin, S.V., Kaptay, G. Physical, Chemical, and Electrochemical Behavior of Boron Oxide in Cryolite-Alumina Melts. Russian Journal of Applied Chemistry 75, 565–568 (2002). https://doi.org/10.1023/A:1019556812014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019556812014

Keywords

Navigation