The Cold Origin of Life: B. Implications Based on Pyrimidines and Purines Produced From Frozen Ammonium Cyanide Solutions

  • Shin Miyakawa
  • H. James Cleaves
  • Stanley L. Miller
Article

Abstract

A wide variety of pyrimidines and purineswere identified as products of a dilute frozen ammoniumcyanide solution that had been held at –78°C for 27 years.This demonstrates that both pyrimidines and purines couldhave been produced on the primitive earth in a short time byeutectic concentration of HCN, even though the concentrationof HCN in the primitive ocean may have been low. We suggestthat eutectic freezing is the most plausible demonstratedmechanism by which HCN polymerizations could have producedbiologically important prebiotic compounds.

alternative base ammonium cyanide chemical evolution cold origin of life eutectic concentration nucleic acid base pyrimidine purine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrhenius, T., Arrhenius, G., and Paplawsky, W.: 1994, Archean Geochemistry of Formaldehyde and Cyanide and the Oligomerization of Cyanohydrin, Origins Life Evol. Biosphere 24, 1–17.Google Scholar
  2. Arrhenius, G., Bada, J. L., Joyce, G. F., Lazcano, A., Miller, S., and Orgel, L. E.: 1999, Origin and Ancestor: Separate Environments, Science 283, 792.Google Scholar
  3. Bada, J. L., Bigham, C., and Miller, S. L.: 1994, Impact Melting of Frozen Oceans on the Early Earth: Implications for the Origin of Life, Proc. Natl. Acad. Sci. USA 91, 1248–1250.Google Scholar
  4. Blau, K. and Halket, J. M.: 1993, Handbook of Derivatives for Chromatography, JohnWiley & Sons, New York.Google Scholar
  5. Cody, G. D., Boctor, N. Z., Filley, T. R., Hazen, R. M., Scott, J. H., Sharma, A., and Yoder, H. S. Jr.: 2000, Primordial Carbonylated Iron-Sulfur Compounds and the Synthesis of Pyruvate, Science 289, 1337–1340.Google Scholar
  6. Corliss, J. B., Baross, J. A., and Hoffman, S. E.: 1981, An Hypothesis Concerning the Relationship between Submarine Hot Springs and the Origin of Life on Earth, Oceanologica Acta Supplement to Vol. 4, 59–69.Google Scholar
  7. Ferris, J. P. and Joshi, P. C.: 1978, Chemical Evolution from Hydrogen Cyanide: Photochemical Decarboxylation of Orotic Acid and Orotate Derivatives, Science 201, 361–362.Google Scholar
  8. Ferris, J. P. and Joshi, P. C.: 1979, Chemical Evolution. 33. Photochemical Decarboxylation of Orotic Acid, Orotidine, and Orotidine 5'-Phosphate, J. Org. Chem. 44, 2133–2137.Google Scholar
  9. Ferris, J. P., Joshi, P. C., Edelson, E. H., and Lawless, J. G.: 1978, HCN: A Plausible Source of Purines, Pyrimidines and Amino Acids on the Primitive Earth, J. Mol. Evol. 11, 293–311.Google Scholar
  10. Forterre, P.: 1996, A Hot Topic: The Origin of Hyperthermophiles, Cell 85, 789–792.Google Scholar
  11. Galtier, N., Tourasse, N., and Gouy, M.: 1999, A Nonhyperthermophilic Common Ancestor to Extant Life Forms, Science 283, 220–221.Google Scholar
  12. Hanel, R., Conrath, B., Flasar, F. M., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., Samuelson, R., Herath, L., Allison, M., Cruikshank, D., Gautier, D., Gierasch, P., Horn, L., Koppany, R., and Ponnamperuma, C.: 1981, Infrared Observations of the Saturnian System from Voyager 1, Science 212, 192–200.Google Scholar
  13. Hidayat, T., Marten, A., Bézard, B., Ganter, D., Owen, T., Matthews, H. E., and Paubert, G.: 1997, Millimeter and Submillimeter Heterodyne Observations of Titan: Retrieval of the Vertical Profile of HCN and the 12C/13C Ratio, Icarus 126, 170–182.Google Scholar
  14. Huber, C. and Wächtershäuser, G.: 1997, Activated Acetic Acid by Carbon Fixation on (Fe, Ni)S Under Primordial Conditions, Science 276, 245–247.Google Scholar
  15. Huber, C. and Wächtershäuser, G.: 1998, Peptides by Activation of Amino Acids with CO on (Ni, Fe)S Surfaces: Implications for the Origin of Life, Science 281, 670–672.Google Scholar
  16. Huebner, W. F., Snyder, L. E., and Buhl, D.: 1974, HCN Radio Emission from Comet Kohoutek (1973f), Icarus 23, 580–584.Google Scholar
  17. Imai, E., Honda, H., Hatori, K., Brack, A., and Matsuno, K.: 1999, Elongation of Oligopeptides in a Simulated Submarine Hydrothermal System, Science 283, 831–833.Google Scholar
  18. Irvine, W. M.: 1999, The Composition of InterstellarMolecular Clouds, Space Sci. Rev. 90, 203–218.Google Scholar
  19. Keefe, A. D. and Miller, S. L.: 1996, Was Ferrocyanide a Prebiotic Reagent?, Origins Life Evol. Biosphere 26, 111–129.Google Scholar
  20. Lake, J. A.: 1988, Origin of the Eukaryotic Nucleus Determined by Rate-Invariant Analysis of rRNA Sequences, Nature 331, 184–186.Google Scholar
  21. Levy, M. and Miller, S. L.: 1998, The Stability of the RNA Bases: Implication for the Origin of Life, Proc. Natl. Acad. Sci. USA 95, 7933–7938.Google Scholar
  22. Levy, M., Miller, S. L., Brinton, K., and Bada, J. L.: 2000, Prebiotic Synthesis of Adenine and Amino Acids under Europa-like Conditions, Icarus 145, 609–613.Google Scholar
  23. Levy, M., Miller, S. L., and Oró, J.: 1999, Production of Guanine from NH4CN Polymerizations, J. Mol. Evol. 49, 165–168.Google Scholar
  24. Lowe, C. U., Rees, M. W., and Markham, F. R. S.: 1963, Synthesis of Complex Organic Compounds from Simple Precursors: Formation of Amino-Acids, Amino-Acid Polymers, Fatty Acids and Purines from Ammonium Cyanide, Nature 199, 219–222.Google Scholar
  25. Magee-Sauer, K., Mumma, M. J., DiSanti, M. A., Russo, N. D., and Rettig, T. W.: 1999, Infrared Spectroscopy of the v 3 Band of Hydrogen Cyanide in Comet C/1995 O1 Hale-Bopp, Icarus 142, 498–508.Google Scholar
  26. Matthews, C. N. and Moser, R. E.: 1967, Peptide Synthesis from Hydrogen Cyanide and Water, Nature 215, 1230–1234.Google Scholar
  27. Matthews, C., Nelson, J., Varma, P., and Minard, R.: 1977, Deuterolysis of Amino Acid Precursors: Evidence for Hydrogen Cyanide Polymers as Protein Ancestors, Science 198, 622–625.Google Scholar
  28. McKay, C. P. and Borucki, W. J.: 1997, Organic Synthesis in Experimental Impact Shocks, Science 276, 390–392.Google Scholar
  29. McOmie, J. F. W. and Turner, B.: 1963, Pyrimidines. Part XII. Syntheses of 4-Amino-5-hydroxyand 4,5-Dihydroxy-pyrimidine, J. Chem. Soc., 5590–5593.Google Scholar
  30. Miller, S. L. and Bada, J. L.: 1988, Submarine Hot Springs and the Origin of Life, Nature 334, 609–611.Google Scholar
  31. Miller, S. L. and Lazcano, A.: 1995, The Origin of Life-Did It Occur at High Temperatures?, J. Mol. Evol. 41, 689–692.Google Scholar
  32. Miller, S. L. and Orgel, L. E.: 1974, The Origins of Life on the Earth, Prentice-Hall, Inc., New Jersey.Google Scholar
  33. Minard, R. D., Hatcher, P. G., Gourley, R. C., and Matthews, C. N.: 1998, Structural Investigations of Hydrogen Cyanide Polymers: New Insights Using TMAH Thermochemolysis/GC-MS, Origins Life Evol. Biosphere 28, 461–473.Google Scholar
  34. Miyakawa, S., Cleaves, H. J., and Miller, S. L.: The Cold Origin of Life: A. Implications Based on the Hydrolytic Stabilities of Hydrogen Cyanide and Formamide, Origins Life Evol. Biosphere 32, 195–208.Google Scholar
  35. Oró, J.: 1960, Synthesis of Adenine from Ammonium Cyanide, Biochem. Biophys. Res. Commun. 2, 407–412.Google Scholar
  36. Oró, J.: 1961, Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions, Nature 191, 1193–1194.Google Scholar
  37. Oró, J. and Kamat, S. S.: 1961, Amino-Acid Synthesis from Hydrogen Cyanide unde Possible Primitive Earth Conditions, Nature 190, 442–443.Google Scholar
  38. Pace, N. R.: 1991, Origin of Life-Facing Up to the Physical Setting, Cell 65, 531–533.Google Scholar
  39. Piccirilli, J. A., Krauch, T., Moroney, S. E., and Benner, S. A.: 1990, Enzymatic Incorporation of a New Base Pair into DNA and RNA Extends the Genetic Alphabet, Nature 343, 33–37.Google Scholar
  40. Robertson, M. P. and Miller, S. L.: 1995, Prebiotic Synthesis of 5-Substituted Uracils: A Bridge between the RNA World and the DNA-ProteinWorld, Science 268, 702–705.Google Scholar
  41. Russell, M. J., Daniel, R. M., Hall, A. J., and Sherringham, J. A.: 1994, A Hydrothermally Precipitated Catalytic Iron Sulphide Membrane as a First Step Toward Life, J. Mol. Evol. 39, 231–243.Google Scholar
  42. Sanchez, R., Ferris, J., and Orgel, L. E.: 1966, Conditions for Purine Synthesis: Did Prebiotic Synthesis Occur at Low Temperatures?, Science 153, 72–73.Google Scholar
  43. Sanchez, R. A., Ferris, J. P., and Orgel, L. E.: 1967, Studies in Prebiotic Synthesis II. Synthesis of Purine Precursors and Amino Acids from Aqueous Hydrogen Cyanide, J.Mol. Biol. 30, 223–253.Google Scholar
  44. Scattergood, T. W., McKay, C. P., Borucki, W. J., Giver, L. P., Ghyseghem, H. V., Parris, J. E., and Miller, S. L.: 1989, Production of Organic Compounds in Plasmas: A Comparison among Electric Sparks, Laser-Induced Plasmas, and UV Light, Icarus 81, 413–428.Google Scholar
  45. Schlesinger, G. and Miller, S. L.: 1983, Prebiotic Synthesis in Atmospheres Containing CH4, CO, and CO2 II. Hydrogen Cyanide, Formaldehyde and Ammonia, J. Mol. Evol. 19, 383–390.Google Scholar
  46. Schwartz, A. W., Joosten, H., and Voet, A. B.: 1982, Prebiotic Adenine Synthesis via HCN Oligomerization in Ice, BioSystems 15, 191–193.Google Scholar
  47. Shock, E. L.: 1990, Geochemical Constraints on the Origin of Organic Compounds in Hydrothermal Systems, Origins Life Evol. Biosphere 20, 331–367.Google Scholar
  48. Shuman, R. F., Shearin, W. E., and Tull, R. J.: 1979, Chemistry of HCN. 1. Formation and Reactions of N-(Aminomethylidene)diaminomaleonitrile, an HCN Pentamer and Precursor to Adenine, J. Org. Chem. 44, 4532–4536.Google Scholar
  49. Stribling, R. and Miller, S. L.: 1986, Energy Yields for Hydrogen Cyanide and Formaldehyde Syntheses: The HCN and Amino Acid Concentrations in the Primitive Ocean, Origins Life 17, 261–273.Google Scholar
  50. Umemoto, K., Takahasi, M., and Yokota, K.: 1987, Studies on the Structure of HCN Oligomers, Origins Life 17, 283–293.Google Scholar
  51. Voet, A. B. and Schwartz, A. W.: 1982, Uracil Synthesis via HCN oligomerization, Origins Life 12, 45–49.Google Scholar
  52. Voet, A. B. and Schwartz, A. W.: 1983, Prebiotic Adenine Synthesis from HCN-Evidence for a Newly Discovered Major Pathway, Bioorg. Chem. 12, 8–17.Google Scholar
  53. Völker, T.: 1960, Polymere Blausäure, Angew. Chem. 72, 379–384.Google Scholar
  54. Wall, J. S.: 1953, Simultaneous Separation of Purines, Pyrimidines, Amino Acids, and Other Nitrogenous Compounds, Anal. Chem. 25, 950–953.Google Scholar
  55. White, R. H.: 1984, Hydrolytic Stability of Biomolecules at High Temperatures and Its Implication for Life at 250 °C, Nature 310, 430–432.Google Scholar
  56. Yanagawa, H., Ogawa, Y., and Ueno, M.: 1992, Redox Ribonucleosides, J. Biol. Chem. 267, 13320–13326.Google Scholar

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Shin Miyakawa
    • 1
  • H. James Cleaves
    • 2
  • Stanley L. Miller
    • 2
  1. 1.Department of Chemistry and Biotechnology, Faculty of EngineeringYokohama National UniversityYokohamaJapan
  2. 2.Department of Chemistry and BiochemistryUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations