Skip to main content
Log in

Creation of a Stable Human Reporter Cell Line Suitable for FACS-Based, Transdominant Genetic Selection

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Quality bioassays are central to all approaches directed at understanding or perturbing the function of proteins. One type of cell-based bioassay involves an engineered reporter whose transcriptional activity serves as a readout for upstream signals of a biochemical pathway(s) that feeds into the reporter. We describe a general strategy for creating a mammalian reporter line with attributes suitable for a high complexity, en masse transdominant genetic screen. The basic criteria required of the mammalian cells engineered with the reporter include ease of maintenance, ease of sorting by FACS, ability to be transduced by retroviruses, and high expression of transduced peptides or cDNAs. For maximal enrichment during selection, the reporter line should have a relatively homogeneous response and a high signal-to-background ratio. We use a melanoma cell line transduced with a retinoic-acid-responsive promoter coupled to a GFP reporter as a case study to demonstrate the strategy. We characterize an optimized retinoic-acid-responsive reporter clone to determine the kinetics of reporter induction and decay in the presence and absence of retinoids. Dose-response studies reveal that the reporter responds to all-trans retinoic acid with an EC50 of approximately 1 nM. The strategy described is general and may be applied to create other reporter lines that respond to a specific stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

LITERATURE CITED

  1. Stark, G.R., and Gudkov, A.V. (1999). Forward genetics in mammalian cells: Functional approaches to gene discovery. Hum. Mol. Genet. 8:1925-1938.

    Google Scholar 

  2. Stockwell, B.R. (2000). Chemical genetics: Ligandbased discovery of gene function. Nat. Rev. Genet. 1:116-125.

    Google Scholar 

  3. Kamb, A., and Teng, D.H.-F. (2000). Transdominant genetics, peptide inhibitors, and drug targets. Curr. Opin. Mol. Ther. 2:662-669.

    Google Scholar 

  4. Caponigro, G., Abedi, M.R., Hurlburt, A.P., Maxfield, A., Judd, W., and Kamb, A. (1998). Transdominant genetic analysis of a growth control pathway. Proc. Natl. Acad. Sci. U.S.A. 95:7508-7513.

    Google Scholar 

  5. Geyer, C.R., Colman-Lerner, A., and Brent, R. (1999). "Mutagenesis" by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl. Acad. Sci. U.S.A. 96:8567-8572.

    Google Scholar 

  6. Norman, T.C., Smith, D.L., Sorger, P.K., Drees, B.L., O'Rouke, S.M., Hughes, T.R., Roberts, C.J., Friend, S.H., Fields, S., and Murray, A.W. (1999). Genetic selection of peptide inhibitors of biological pathways. Science 285:591-595.

    Google Scholar 

  7. Gudkov, A.V., Kazarov, A.R., Thimmapaya, R., Axenovich, S.A., Mazo, I.A., and Roninson, I.B. (1994). Cloning mammalian genes by expression selection of genetic suppressor elements: Association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad. Sci. U.S.A. 91:3744-3748.

    Google Scholar 

  8. Blum, J.H., Dove, S.L., Hochschild, A., and Mekalanos, J.J. (2000). Isolation of peptide aptamers that inhibit intracellular processes. Proc. Natl. Acad. Sci. U.S.A. 97:2241-2246.

    Google Scholar 

  9. Levenson, V.V., Lausch, E., Kirschling, D.J., Broude, E.V., Davidovich, I.A., Libants, S., Fedosova, V., and Roninson, I.B. (1999). A combination of genetic suppressor elements produces resistance to drugs inhibiting DNA replication. Somat. Cell Mol. Genet. 25:9-26.

    Google Scholar 

  10. Edelman, G.M., Meech, R., Owens, G.C., and Jones, F.S. (2000). Synthetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl. Acad. Sci. U.S.A. 97:3038-3043.

    Google Scholar 

  11. Zhang, Y.Z., Naleway, J.J., Larison, K.D., Huang, Z.J., and Haugland, R.P. (1991). Detecting lacZ gene expression in living cells with newlipophilic, fluorogenic betagalactosidase substrates. FASEB J. 5:3108-3113.

    Google Scholar 

  12. Zlokarnik, G., Negulescu, P.A., Knapp, T.E., Mere, L., Burres, N., Feng, L., Whitney, M., Roemer, K., and Tsien, R.Y. (1998). Quantitation of transcription and clonal selection of single living cells with betalactamase as reporter. Science 279:84-88.

    Google Scholar 

  13. Li, X., Eastman, E.M., Schwartz, R.J., and Draghia-Akli, R. (1999). Synthetic muscle promoters: Activities exceeding naturally occurring regulatory sequences. Nat. Biotechnol. 17:241-245.

    Google Scholar 

  14. Himes, S.R., and Shannon, M.F. (2000). Assays for transcriptional activity based on the luciferase reporter gene. Methods Mol. Biol. 130:165-174.

    Google Scholar 

  15. Wood, S.M., Wiesener, M.S., Yeates, K.M., Okada, N., Pugh, C.W., Maxwell, P.H., and Ratcliffe, P.J. (1998). Selection and analysis of a mutant cell line defective in the hypoxia-inducible factor-1 alpha-subunit (HIF-1alpha). Characterization of hif-1alpha-dependent and-independent hypoxia-inducible gene expression. J. Biol. Chem. 273:8360-8368.

    Google Scholar 

  16. Sotiropoulos, A., Gineitis, D., Copeland, J., and Treisman, R. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159-169.

    Google Scholar 

  17. Kandel, E.S., Chang, B.D., Schott, B., Shtil, A.A., Gudkov, A.V., and Roninson, I.B. (1997). Applications of green fluorescent protein as a marker of retroviral vectors. Somat. Cell Mol. Genet. 23:325-340.

    Google Scholar 

  18. Galbraith, D.W., Anderson, M.T., and Herzenberg, L.A. (1999). Flow cytometric analysis and FACS sorting of cells based on GFP accumulation. Methods Cell Biol. 58:315-341.

    Google Scholar 

  19. de The, H., Vivanco-Ruiz, M.M., Tiollais, P., Stunnenberg, H., and Dejean, A. (1990). Identification of a retinoic acid responsive element in the retinoic acid receptor beta gene. Nature 343:177-180.

    Google Scholar 

  20. Hoffmann, B., Lehmann, J.M., Zhang, X.K., Hermann, T., Husmann, M., Graupner, G., and Pfahl, M. (1990). A retinoic acid receptor-specific element controls the retinoic acid receptor-beta promoter. Mol. Endocrinol. 4:1727-1736.

    Google Scholar 

  21. Valcarcel, R., Holz, H., Jimenez, C.G., Barettino, D., and Stunnenberg, H.G. (1994). Retinoid-dependent in vitro transcription mediated by the RXR/RAR heterodimer. Genes Dev. 8:3068-3079.

    Google Scholar 

  22. Brooks, S.C., III, Kazmer, S., Levin, A.A., and Yen, A. (1996). Myeloid differentiation and retinoblastoma phosphorylation changes in HL-60 cells induced by retinoic acid receptor-and retinoid X receptor-selective retinoic acid analogs. Blood 87:227-237.

    Google Scholar 

  23. Nagy, L., Thomazy, V.A., Shipley, G.L., Fesus, L., Lamph, W., Heyman, R.A., Chandraratna, R.A., and Davies, P.J. (1995). Activation of retinoid X receptors induces apoptosis in HL-60 cell lines. Mol. Cell Biol. 15:3540-3551.

    Google Scholar 

  24. Burns, J.C., Friedmann, T., Driever,W., Burrascano, M., and Yee, J.K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: Concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. U.S.A. 90:8033-8037.

    Google Scholar 

  25. Abedi, M.R., Caponigro, G., and Kamb, A. (1998). Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic Acids Res. 26:623-630.

    Google Scholar 

  26. Hilberg, F., Stocking, C., Ostertag, W., and Grez, M. (1987). Functional analysis of a retroviral host-range mutant: Altered long terminal repeat sequences allow expression in embryonal carcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 84:5232-5236.

    Google Scholar 

  27. Grez, M., Akgun, E., Hilberg, F., and Ostertag, W. (1990). Embryonic stem cell virus, a recombinant murine retrovirus with expression in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 87:9202-9206.

    Google Scholar 

  28. Whitney, M., Rockenstein, E., Cantin, G., Knapp, T., Zlokarnik, G., Sanders, P., Durick, K., Craig, F.F., and Negulescu, P.A. (1998). A genome-wide functional assay of signal transduction in living mammalian cells. Nat. Biotechnol. 16:1329-1333.

    Google Scholar 

  29. Fiering, S., Northrop, J.P., Nolan, G.P., Mattila, P.S., Crabtree, G.R., and Herzenberg, L.A. (1990). Single cell assay of a transcription factor reveals a threshold in transcription activated by signals emanating from the T-cell antigen receptor. Genes Dev. 4:1823-1834.

    Google Scholar 

  30. Karttunen, J., and Shastri, N. (1991). Measurement of ligand-induced activation in single viable T cells using the lacZ reporter gene. Proc. Natl. Acad. Sci. U.S.A. 88:3972-3976.

    Google Scholar 

  31. Ferrell, J.E., Jr., and Machleder, E.M. (1998). The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280:895-898.

    Google Scholar 

  32. Shiohara, M., Dawson, M.I., Hobbs, P.D., Sawai, N., Higuchi, T., Koike, K., Komiyama, A., and Koeffler, H.P. (1999). Effects of novel RAR-and RXR-selective retinoids on myeloid leukemic proliferation and differentiation in vitro. Blood 93:2057-2066.

    Google Scholar 

  33. Herget, T., Specht, H., Esdar, C., Oehrlein, S.A., and Maelicke, A. (1998). Retinoic acid induces apoptosisassociated neural differentiation of a murine teratocarcinoma cell line. J. Neurochem. 70:47-58.

    Google Scholar 

  34. Koshland, D.E., Jr. (1998). The era of pathway quantification. Science 280:852-853.

    Google Scholar 

  35. Corish, P., and Tyler-Smith, C. (1999). Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng. 12:1035-1040.

    Google Scholar 

  36. Li, X., Zhao, X., Fang, Y., Jiang, X., Duong, T., Fan, C., Huang, C.C., and Kain, S.R. (1998). Generation of destabilized green fluorescent protein as a transcription reporter. J. Biol. Chem. 273:34970-34975.

    Google Scholar 

  37. Klucher, K.M., Gerlach, M.J., and Daley, G.Q. (1997). A novel method to isolate cells with conditional gene expression using fluorescence activated cell sorting. Nucleic Acids Res. 25:4858-4860.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Richards, B., Karpilow, J., Dunn, C. et al. Creation of a Stable Human Reporter Cell Line Suitable for FACS-Based, Transdominant Genetic Selection. Somat Cell Mol Genet 25, 191–205 (1999). https://doi.org/10.1023/A:1019206625658

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019206625658

Keywords

Navigation