Skip to main content
Log in

Computing a molecule: A mathematical viewpoint

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We give here an overview of the mathematical results known to this day on the models used in Quantum Chemistry for the numerical computations of molecules. We focus on the problems related to the ground state, in the framework of Hartree–Fock type models and Thomas–Fermi type models. More precisely, we outline the most recent results on the following questions: existence and uniqueness of the minimum, and existence of an optimized geometry for the nuclei. We eventually give a list of open problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Adams, Sobolev Spaces(Academic Press, New York, 1975).

    Google Scholar 

  2. R. Ahlrichs, Basic mathematical properties of electronic wave functions in configuration space, in: Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, eds. M. Defranceschi and J. Delhalle (Kluwer Academic Publishers, Dordrecht, 1989) pp. 1–15.

    Google Scholar 

  3. G. Auchmuty and Wenyao Jia, Convergent iterative methods for the Hartree eigenproblem, M2 AN, Math. Model. and Num. Anal. 28(5) (1994) 575–610.

    Google Scholar 

  4. L.J. Bartolotti, A new gradient expansion of the exchange energy to be used in density functional calculations on atoms, J. Chem. Phys. 76(12) (1982) 6057–6059.

    Article  CAS  Google Scholar 

  5. R. Benguria and E.H. Lieb, The most negative ion in the Thomas–Fermi–von Weizsäcker theory of atoms and molecules, J. Phys. B 18 (1985) 1045–1059.

    Article  CAS  Google Scholar 

  6. Ph. Benilan, J.A. Goldstein and G.R. Rieder, The Fermi–Amaldi correction in spin polarized Thomas–Fermi theory, in: Differential Equations and Mathematical Physics, ed. C. Bennewitz (Academic Press, New York, 1991) pp. 25–37.

    Google Scholar 

  7. Ph. Benilan, J.A. Goldstein and G.R. Rieder, A nonlinear elliptic system arising in electron density theory, Comm. Part. Diff. Equ. 17(11–12) (1992) 2079–2092.

    Google Scholar 

  8. H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-Electrons Atoms(Springer-Verlag, Berlin, 1957) pp. 170–201.

    Google Scholar 

  9. H. Brezis, Some variational problems of the Thomas–Fermi type, in: Variational Inequalities and Complementary Problems, Theory and Applications, eds. Cottle, Giannesi and Lions (Wiley, 1980).

  10. I. Catto, C. Le Bris and P.L. Lions, Mathematical Theory of Thermodynamic limits: Thomas–Fermi type models, to be published by Oxford University Press.

  11. I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories: A necessary and sufficient condition for the stability of a general molecular system, Comm. Part. Diff. Equ. 17(7–8) (1992) 1051–1110.

    Google Scholar 

  12. I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories: Stability is equivalent to the binding of neutral subsystems, Comm. Part. Diff. Equ. 18(1–2) (1993) 305–354.

    Google Scholar 

  13. I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories: Binding of neutral subsystems, Comm. Part. Diff. Equ. 18(3–4) (1993) 381–429.

    Google Scholar 

  14. I. Catto and P.-L. Lions, Binding of atoms and stability of molecules in Hartree and Thomas–Fermi type theories: Binding of neutral systems for the Hartree model, Comm. Part. Diff. Equ. 18(7–8) (1993) 1149–1159.

    Google Scholar 

  15. I. Catto and P.-L. Lions, Hartree and Thomas–Fermi type models and the binding of molecular systems, Preprint 9120 CEREMADE, Université Paris 9, 1991.

  16. E. Clementi and S. Chakraverty, A comparative study of density functional models to estimate molecular atomization energies, J. Chem. Phys. 93 (1990) 2591–2602.

    Article  CAS  Google Scholar 

  17. E. Clementi and S. Chakraverty, Advances in Quant. Chem. 21 (1990).

  18. D.A. Dixon, Numerical simulation of molecular properties in the chemical industry, in: Science and Engineering on Cray Supercomputers, Proceedings of the Third International Symposium, Minneapolis, 1987.

  19. R.M. Dreizleir and E.K.U. Gross, Density Functional Theory, An Approach to the Quantum Many Body Problem(Springer-Verlag, Berlin, 1990).

    Google Scholar 

  20. M.J. Esteban and P.-L. Lions, Stationary solutions of nonlinear Schrödinger equations with an external magnetic field, in: Partial Differential Equations and the Calculus of Variations, Vol. 1, eds. F. Colombini et al. (Birkhaüser, 1989).

  21. M.J. Esteban and E. Séré, Preprint CEREMADE 9321, Université Paris 9.

  22. M.J. Esteban and E. Séré, Existence de solutions stationnaires pour l’équation de Dirac non linéaire et le système de Dirac–Poisson, to appear in C. R. Acad. Sc., Série I.

  23. M.J. Esteban, V. Georgiev and E. Séré, Stationary solutions of the Maxwell–Dirac and the Klein–Gordon–Dirac equations, to appear.

  24. J.C. Facelli and R.H. Contreras, A general relation between the intrinsic convergence properties of SCF Hartree–Fock calculations and the stability conditions of their solutions, J. Chem. Phys. 79 (1983) 3421–3423.

    Article  CAS  Google Scholar 

  25. P. Fischer and M. Defranceschi, Representation of the atomic Hartree–Fock equations in a wavelet basis thanks to the BCR algorithm, in: Wavelets: Theory, Algorithms, Applications, eds. C.K. Chui, L. Montefusco, L. Puccio (Academic Press, New York, 1994) pp. 495–506.

    Google Scholar 

  26. P. Fischer and M. Defranceschi, Numerical solutions of Schrödinger equation in a wavelet basis for hydrogenic cations, SIAM, in press.

  27. P. Fischer and M. Defranceschi, The wavelet transform: a new mathematical tool for Quantum Chemistry, in: Conceptual Trends in Quantum Chemistry, Vol. 1, eds. E.S. Kryachko, J.-L. Calais (Kluwer Academic Publishers, Dordrecht, 1994) pp. 227–247.

    Google Scholar 

  28. G. Fonte, Convergence of the Raighley–Ritz method in SCF and MCSCF calculations, Theoret. Chim. Acta (Berl.) 59 (1981) 533–549.

    CAS  Google Scholar 

  29. A. Friedman, Numerical simulations for industrial chemical research, in: Mathematics in Industrial Problems, IMA 38 (Springer-Verlag, Heidelberg).

  30. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  31. J.A. Goldstein and G.R. Rieder, Thomas–Fermi theory with an external magnetic field, J. Math. Phys. 32(10) (1991) 2907–2917.

    Article  Google Scholar 

  32. G.R. Goldstein, J.A. Goldstein and W. Jia, Thomas–Fermi theory with magnetic fields and the Fermi–Amaldi correction, to appear in Differential and Integral Equations.

  33. N. Gonzales and J. Simons, Combining doubly charged cations and anions to form new species, J. Chem. Phys. 100 (1994) 5778–5784.

    Article  CAS  Google Scholar 

  34. O. Gunnarsson and B.I. Lundqvist, Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism, Phys. Rev. B 13(10) (1976) 4274–4298.

    Article  CAS  Google Scholar 

  35. M. Gutowski and J. Simons, Anionic states of LiFLi, J. Chem. Phys. 100 (1994) 1308–1311.

    Article  CAS  Google Scholar 

  36. W.J. Hehre, L. Radom, P.v.R. Schleyer and J.A. Pople, Ab initio Molecular Orbital Theory(Wiley, New York, 1986).

    Google Scholar 

  37. J. Hinze, An overview of computational methods for large molecules, Adv. Chem. Phys. 26 (1974) 213–263.

    CAS  Google Scholar 

  38. P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B 136 (1964) 864.

    Article  Google Scholar 

  39. A.C. Hurley, Introduction to the Electron Theory of Small Molecules(Academic Press, London, 1976).

    Google Scholar 

  40. A.C. Hurley, Electron Correlation in Small Molecules(Academic Press, London, 1976).

    Google Scholar 

  41. T. Ishida and K. Ohno, On the asymptotic behavior of Hartree–Fock orbitals, Theor. Chim. Acta 81 (1992) 355–364.

    Article  CAS  Google Scholar 

  42. R.O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(3) (1989) E689–746.

    Article  Google Scholar 

  43. J. Jortner, Dielectric medium effects on loosely bound electrons, Mol. Phys. 5 (1962) 257–270.

    Article  CAS  Google Scholar 

  44. J. Jortner and C.A. Coulson, Environmental effects on atomic energy levels, Mol. Phys. 4 (1961) 451–464.

    Article  CAS  Google Scholar 

  45. J. Katriel, Reduction of the excited state into the ground state of a super hamiltonian, Int. J. Quant. Chem. 23 (1983) 1767–1780.

    Article  CAS  Google Scholar 

  46. B. Klahn and W.E. Bingel, The convergence of the Raighley–Ritz method in Quantum Chemistry. 1-The criteria of convergence, Theoret. Chem. Acta 44 (1977) 9–26.

    CAS  Google Scholar 

  47. B. Klahn and W.E. Bingel, The convergence of the Raighley–Ritz method in Quantum Chemistry. 2: Investigation of the convergence for special systems of Slater, Gauss, and two-electrons functions, Theoret. Chem. Acta 44 (1977) 27–43.

    Article  CAS  Google Scholar 

  48. T. Koga and A.J. Thakkar, Linear integrability of wavefunctions, Int. J. Quant. Chem. 34 (1988) 103–106.

    Article  CAS  Google Scholar 

  49. W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A 140 (1965) 1133.

    Article  Google Scholar 

  50. J. Kostrowicki, L. Piela, B.J. Cherayil and H.A. Scheraga, Performance of the diffusion equation method in searches for optimum structures of clusters of Lennard–Jones atoms, J. Phys. Chem. 95 (1991) 4113–4119.

    Article  CAS  Google Scholar 

  51. J. Kostrowicki and L. Piela, Diffusion equation method of global optimization: performance for standard test functions, J. of Optim. Th. and Appl. 69(2) (1991) 269–284.

    Article  Google Scholar 

  52. W. Kutzelnigg, Theory of the expansion of wave functions in a Gaussian basis, Int. J. Quant. Chem. 51 (1994) 447–463.

    Article  CAS  Google Scholar 

  53. C. Le Bris, Some results on the Thomas–Fermi–Dirac–von Weiszäcker model, Differential and Integral Equations 6(2) (1993) 337–353.

    Google Scholar 

  54. C. Le Bris, Thomas–Fermi theory with the Fermi–Amaldi correction, Nonlinear Analysis, Theory, Methods and Applications 25(7) (1995). See also [56]

  55. C. Le Bris, A general approach for multiconfiguration methods in Quantum Molecular Chemistry, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire 11(4) (1994) 441–484.

    Google Scholar 

  56. C. Le Bris, Quelques problèemes mathématiques en chimie quantique moléculaire, Thèse de l’Ecole Polytechnique, 1993.

  57. N. Levasseur, Ph. Millié, Ph. Archirel and B. Levy, Bond formation between positively charged species. Non-adiabatic analysis and valence bond model in the CO2+ case, Chem. Phys. 153 (1991) 387–398.

    Article  CAS  Google Scholar 

  58. I.N. Levine, Quantum Chemistry, 4th edition (Prentice Hall, 1991).

  59. E.H. Lieb, Thomas–Fermi and related theories of atoms and molecules, Rev. Mod. Phys. 53 (1981) 603–640.

    Article  CAS  Google Scholar 

  60. E.H. Lieb and B. Simon, The Hartree–Fock theory for Coulomb systems, Comm. Math. Phys. 53 (1977) 185–194.

    Article  Google Scholar 

  61. E.H. Lieb and B. Simon, The Thomas–Fermi theory of atoms, molecules and solids, Adv. in Math. 23 (1977) 22–116.

    Article  Google Scholar 

  62. E.H. Lieb, The stability of matter: from atoms to stars, Bull. of the AMS 22 (1990).

  63. E.H. Lieb, The Stability of Matter: From Atoms to Stars. Selecta of Elliot Lieb(Springer-Verlag, Berlin, 1991).

    Google Scholar 

  64. P.L. Lions, Solutions of Hartree–Fock equations for Coulomb systems, Comm. Math. Phys. 109 (1987) 33–97.

    Article  Google Scholar 

  65. P.L. Lions, The concentration–compactness principle in the calculus of variations. The locally compact case, part 1 and 2, Ann. Inst. Henri Poincaré 1 (1984) 109–145 and 223–283.

    Google Scholar 

  66. P.L. Lions, Symmetry breakings in vector-valued minimization problems, preprint 8708 CEREMADE, Université Paris 9, 1987.

  67. P.O. Löwdin, Some aspects on the history of computational quantum chemistry: In view of the development of the supercomputers and large scale parallel computers, in: Supercomputer Simulations in Chemistry, ed. M. Dupuis, Lecture Notes in Chemistry 44 (Springer-Verlag, Berlin, 1986).

    Google Scholar 

  68. N.H. March, Electron Density Theory of Atoms and Molecules(Academic Press, New York, 1989).

    Google Scholar 

  69. N.H. March, Self-Consistent Fields in Atoms(Pergamon, Oxford, 1975).

    Google Scholar 

  70. S. Miertiuš, E. Scrocco and J. Tomasi, Electronic interaction of a solute with a continuum. A direct utilisation of ab initio molecular potentials for the prevision of solvent effect, Chem. Phys. 55 (1981) 117–129.

    Article  Google Scholar 

  71. J.D. Morgan, The analytic structure of atomic and molecular wavefunctions and its impact on the rate of convergence of variational calculations, in: Numerical Determination of the Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, eds. M. Defranceschi and J. Delhalle (Kluwer Academic Publishers, Dordrecht, 1989) pp. 1–15.

    Google Scholar 

  72. L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc. 58 (1936) 1486–1492.

    Article  CAS  Google Scholar 

  73. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules(Oxford University Press, Oxford and New York, 1989).

    Google Scholar 

  74. M. Persico and J. Tomasi, Molecular interactions in solution: an overview of methods based on continuous distributions of the solvent, to appear in Chemical Reviews.

  75. L. Piela, J. Kostrowicki and H.A. Scheraga, The multiple minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method, J. Phys. Chem. 93 (1989) 3339–3346.

    Article  CAS  Google Scholar 

  76. P. Pulay, Analytical derivative methods in quantum chemistry, Adv. Chem. Phys. 69 (1987) 241.

    CAS  Google Scholar 

  77. P. Pyykkö, Ab initio predictions for new chemical species, Physica Scripta 133 (1990) 52–53.

    Google Scholar 

  78. P. Pyykkö, Relativistic effects in structural chemistry, Chem. Rev. 88 (1988) 563–594.

    Article  Google Scholar 

  79. P. Pyykkö and J.-P. Desclaux, Relativity and the periodic system of elements, Acc. Chem. Res. 12 (1979) 276–281.

    Article  Google Scholar 

  80. P. Pyykkö and Y. Zhao, Ab initio study of bonding trends. The 22-electron A=B=C series: Possible new anions down to NCB4- and possible new cations up to FNF3+, J. Phys. Chem. 94 (1990) 7753–7759.

    Article  Google Scholar 

  81. M. Reed and B. Simon, Methods of Modern Mathematical Physics(Academic Press, New York, 1975).

    Google Scholar 

  82. D. Rinaldi, M.F. Ruiz-Lopez, and J.-L. Rivail, Ab initio SCF calculations on electrostatically solvated molecules using a deformable three axes ellipsoidal cavity, J. Chem. Phys. 78(2) (1983) 834–838.

    Article  CAS  Google Scholar 

  83. J.-L. Rivail and D. Rinaldi, A quantum mechanical approach to dielectric solvent effects in molecular liquids, Chem. Phys. 18 (1976) 233–242.

    Article  CAS  Google Scholar 

  84. M.K. Scheller and L.S. Cederbaum, A construction principle for stable multiply charged molecular anions in gas phase, Chem. Phys. Letters 216 (1993) 141–146.

    Article  CAS  Google Scholar 

  85. M.K. Scheller and L.S. Cederbaum, Stable multiply negative ionic chains: How many excess electrons can a finite quasilinear molecule hold?, J. Chem. Phys. 101 (1994) 3962–3972.

    Article  CAS  Google Scholar 

  86. I. Shavitt, The method of configuration interaction, in: Methods of Electronic Structure Theory, ed. H.F. Schaefer (Plenum Press, 1977).

  87. R. Shepard, The Multiconfiguration self-consistent field method, Adv. Chem. Phys. 69 (1987) 63.

    CAS  Google Scholar 

  88. C.C. Shih, D.R. Murphy and Wen-Ping Wang, Gradient expansion of the exchange energy functional: A complementary expansion of the atomic energy functional, J. Chem. Phys. 73(3) (1980) 1340–1343.

    Article  CAS  Google Scholar 

  89. J.P. Solovej, Universality in the Thomas–Fermi–von Weizsäcker model of atoms and molecules, Comm. Math. Phys. 129 (1990) 561–598.

    Article  Google Scholar 

  90. L. Spruch, Pedagogic notes on Thomas–Fermi theory (and some improvements): atoms, stars, and the stability of bulk matter, Rev. Mod. Phys. 63(1) (1991) 151–209.

    Article  Google Scholar 

  91. R.E. Stanton, The existence and cure of intrinsic divergence in closed shell SCF calculations, J. Chem. Phys. 75(7) (1981) 3426–3432.

    Article  CAS  Google Scholar 

  92. R.E. Stanton, Intrinsic convergence in closed shell SCF calculations. A general criterion, J. Chem. Phys. 75(11) (1981) 5416–5422.

    Article  CAS  Google Scholar 

  93. W. Stich, E.K.U. Gross, P. Malzacher and R.M. Dreizler, Accurate solution of the Thomas–Fermi–Dirac–von Weizsäcker variational equations for the case of neutral atoms and positive ions, Z. Phys. A 309 (1982) 5–11.

    Article  CAS  Google Scholar 

  94. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry: an Introduction to Advanced Electronic Structure Theory(Macmillan, New York, 1982).

    Google Scholar 

  95. D. Talbi and R.P. Saxon, Theoretical study of low-lying states of H3O, J. Chem. Phys. 91 (1989) 2376–2387.

    Article  CAS  Google Scholar 

  96. D.W. Turner, C. Baker, A.D. Baker and C.R. Brundle, Molecular Photoelectron Spectroscopy (Wiley Intersciences, London, 1970).

    Google Scholar 

  97. A.C. Wahl and G. Das, The Multiconfiguration self-consistent field method, in: Methods of Electronic Structure Theory, ed. H.F. Schaefer (Plenum Press, 1977).

  98. H.-J. Werner and W. Meyer, A quadratically convergent multiconfiguration-self-consistent field method with simultaneous optimization of orbitals and CI coefficients, J. Chem. Phys. 73 (1980) 2342–2356.

    Article  CAS  Google Scholar 

  99. S. Wilson, Electron Correlation in Molecules(Clarendon Press, Oxford, 1984).

    Google Scholar 

  100. Pan Hui-Yun and Zhao Zu Sen, On the conditions for physical admissibility of Schrödinger equation, Int. J. Quant. Chem. 40 (1991) 605–609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Defranceschi, M., Le Bris, C. Computing a molecule: A mathematical viewpoint. Journal of Mathematical Chemistry 21, 1–30 (1997). https://doi.org/10.1023/A:1019197613932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019197613932

Keywords

Navigation