Skip to main content
Log in

Numerical approximation of homoclinic chaos

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Transversal homoclinic orbits of maps are known to generate a Cantor set on which a power of the map conjugates to the Bernoulli shift on two symbols. This conjugacy may be regarded as a coding map, which for example assigns to a homoclinic symbol sequence a point in the Cantor set that lies on a homoclinic orbit of the map with a prescribed number of humps. In this paper we develop a numerical method for evaluating the conjugacy at periodic and homoclinic symbol sequences in a systematic way. The approach combines our previous method for computing the primary homoclinic orbit with the constructive proof of Smale's theorem given by Palmer. It is shown that the resulting nonlinear systems are well conditioned uniformly with respect to the characteristic length of the symbol sequence and that Newton's method converges uniformly too when started at a proper pseudo orbit. For the homoclinic symbol sequences an error analysis is given. The method works in arbitrary dimensions and it is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. L. Allgower and K. Georg, NumericalContinuation Methods: An Introduction, Springer Series in Computational Mathematics 13 (Springer, Berlin, 1990).

  2. W.-J. Beyn and J.-M. Kleinkauf, The numerical computation of homoclinic orbits for maps, preprint 95–012, SFB 343, Bielefeld (1995). To appear in SIAM J. Numer. Anal.

  3. K. Deimling,Multivalued Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications 1 (de Gruyter, Berlin, 1992).

    MATH  Google Scholar 

  4. J. K. Hale and X.-B. Lin, Symbolic dynamics and nonlinearsemiflows, Ann. Mat. Pura Appl. 144 (1986) 229–259.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. J. Homburg, On the computation of hyperbolic sets and theirinvariant manifolds, preprint No. 68, Institut für Angewandte Analysis und Stochastik, Berlin (1993).

    Google Scholar 

  6. J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).

    MATH  Google Scholar 

  7. J. Palis and F. Takens, Hyperbolicity and Sensitive ChaoticDynamics at Homoclinic Bifurcation (Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  8. K. J. Palmer, Exponentialdichotomies, the shadowing lemma and transversal homoclinic points, in: Dynamics Reported I, eds. U. Kirchgraber and H.-O. Walther (Teubner, Stuttgart, 1988) pp. 265–306.

    Google Scholar 

  9. L. P. Shil'nikov, On a Poincaré-Birkhoff problem, Math. USSR-Sb. 3 (1967) 353–371.

    Article  Google Scholar 

  10. S. Smale,Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967) 747–817.

    Article  MATH  MathSciNet  Google Scholar 

  11. H. Steinlein and H.-O. Walther,Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in Banach spaces, J. Dyn. Diff. Eqs. 3 (1990) 325–365.

    Article  MATH  MathSciNet  Google Scholar 

  12. G. Vainikko, Funktionalanalysisder Diskretisierungsmethoden (Teubner, Leipzig, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyn, WJ., Kleinkauf, JM. Numerical approximation of homoclinic chaos. Numerical Algorithms 14, 25–53 (1997). https://doi.org/10.1023/A:1019196426363

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019196426363

Navigation