Skip to main content
Log in

Quantum-chemical modeling of the hydrocarbon transformations in acid zeolite catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Results of quantum-chemical modeling of a number of elementary steps involved in the acid zeolite-catalyzed conversion of hydrocarbons are collected together and compared. The elementary steps considered are protolytic cracking, protolytic dehydrogenation, hydride transfer, skeletal isomerization, and β-scission. The hydrocarbon parts of transition states (TS) for these steps represent carbocations specific for each reaction. Geometry parameters of the TS and activation energies depend on the relative stability of these carbocations. The reactions considered can proceed via several alternative routes dependent on the species involved and on the details of the interaction of the hydrocarbon portion of the activated complex with the zeolite oxygen atoms. Variation of the acid strength of zeolite cluster models can be employed for studies of the acid strength sensitivity of the activation energies and other quantities of interest as well as for extrapolation of these quantities computed on small clusters towards zeolitic values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.W. Wojcechowski and A. Corma, Catalytic Cracking: Catalysts, Chemistry and Kinetics (Dekker, New York, 1986).

    Google Scholar 

  2. I.E. Maxwell and W.H.J. Stork, in: Introduction to Zeolite Science and Practice, Vol. 58, eds. H. van Bekkum, E.M. Flanigen and J.C. Jansen (Elsevier, Amsterdam, 1991) ch. 15.

    Google Scholar 

  3. A. Corma, Chem. Rev. 95 (1995) 559.

    Article  CAS  Google Scholar 

  4. (a) V.B. Kazansky, Acc. Chem. Res. 24 (1991) 379; (b) V.B. Kazansky, Stud. Surf. Sci. Catal. 85 (1994) 251.

    Article  Google Scholar 

  5. G.J. Kramer, R.A. van Santen, C.A. Emeis and A.K. Nowak, Nature 363 (1993) 529.

    Article  CAS  Google Scholar 

  6. G.J. Kramer and R.A. van Santen, J. Am. Chem. Soc. 117 (1995) 1766.

    Article  CAS  Google Scholar 

  7. E.M. Evleth, E. Kassab and L.R. Sierra, J. Phys. Chem. 98 (1994) 1421.

    Article  CAS  Google Scholar 

  8. S.R. Blaszkowski, A.P.J. Jansen, M.A.C. Nascimento and R.A. van Santen, J. Phys. Chem. 98 (1994) 12938.

    Article  CAS  Google Scholar 

  9. S.R. Blaszkowski, M.A.C. Nascimento and R.A. van Santen, J. Phys. Chem. 100 (1996) 3463.

    Article  CAS  Google Scholar 

  10. L.W. Beck, T. Xu, J.B. Nicholas and J.F. Haw, J. Am. Chem. Soc. 117 (1995) 11594.

    Article  CAS  Google Scholar 

  11. I.N. Senchenya and V.B. Kazansky, Catal. Lett. 8 (1991) 317.

    Article  CAS  Google Scholar 

  12. P. Viruela-Martin, C.M. Zikovich-Wilson and A. Corma, J. Phys. Chem. 97 (1993) 13713.

    Article  CAS  Google Scholar 

  13. E.M. Evleth, E. Kassab, H. Jessri, M. Allavena, L. Montero and L.R. Sierra, J. Phys. Chem. 100 (1996) 11368.

    Article  CAS  Google Scholar 

  14. S.R. Blaszkowski and R.A. van Santen, J. Am. Chem. Soc. 118 (1996) 5152.

    Article  CAS  Google Scholar 

  15. S.R. Blaszkowski and R.A. van Santen, J. Am. Chem. Soc. 119 (1997) 5020.

    Article  CAS  Google Scholar 

  16. S.R. Blaszkowski and R.A. van Santen, J. Phys. Chem. B 101 (1997) 2292.

    CAS  Google Scholar 

  17. P.E. Sinclair and C.R.A. Catlow, J. Phys. Chem. B 101 (1997) 295.

    CAS  Google Scholar 

  18. P.E. Sinclair and C.R.A. Catlow, J. Chem. Soc. Faraday Trans. 93 (1997) 333.

    Article  CAS  Google Scholar 

  19. R. Shah, J.D. Gale and M.C. Payne, J. Phys. Chem. B 101 (1997) 4787.

    CAS  Google Scholar 

  20. J. Sauer, P. Ugliengo, E. Garrone and V.R. Saunders, Chem. Rev. 94 (1994) 2095.

    Article  CAS  Google Scholar 

  21. G.J. Kramer and R.A. van Santen, Chem. Rev. 95 (1995) 637.

    Article  Google Scholar 

  22. S.R. Blaszkowski and R.A. van Santen, Topics in Catal. 4 (1997) 145.

    Article  CAS  Google Scholar 

  23. R.A. van Santen, Catal. Today 38 (1997) 377.

    Article  CAS  Google Scholar 

  24. J.B. Nicholas, Topics in Catal. 4 (1997) 157.

    Article  CAS  Google Scholar 

  25. U. Eichler, C.M. Kölmel and J. Sauer, J. Comput. Chem. 18 (1996) 463.

    Article  Google Scholar 

  26. A.H. de Vries, P. Sherwood, S.J. Collins, A.M. Rigby, M. Rigutto and G.J. Kramer, submitted.

  27. P.E. Sinclair, A. de Vries, P. Sherwood, C.R.A. Catlow and R.A. van Santen, J. Chem. Soc. Faraday Trans. 94 (1998) 3401.

    Article  CAS  Google Scholar 

  28. M. Brindle and J. Sauer, J. Molec. Catal. A 119 (1997) 19.

    Article  Google Scholar 

  29. E. Nusterer, P.E. Blöchl and K. Schwarz, Chem. Phys. Lett. 253 (1996) 448.

    Article  CAS  Google Scholar 

  30. T. Matsubara, F. Maseras, N. Koga and K. Morokuma, J. Phys. Chem. 100 (1996) 2573.

    Article  CAS  Google Scholar 

  31. R.D.J. Froese, S. Humbel, M. Svensson and K. Morokuma, J. Phys. Chem. A 101 (1997) 227.

    CAS  Google Scholar 

  32. R. Shah, J.D. Gale and M.C. Payne, J. Phys. Chem. 100 (1996) 11688.

    Article  CAS  Google Scholar 

  33. A.M. Rigby, G.J. Kramer and R.A. van Santen, J. Catal. 170 (1997) 1.

    Article  CAS  Google Scholar 

  34. F. Haase and J. Sauer, J. Am Chem. Soc. 117 (1995) 3780.

    Article  CAS  Google Scholar 

  35. H.V. Brand, L.A. Curtiss and L.E. Iton, J. Phys. Chem. 97 (1993) 12773.

    Article  CAS  Google Scholar 

  36. H.V. Brand, L.A. Curtiss and L.E. Iton, J. Phys. Chem. 96 (1992) 7725.

    Article  CAS  Google Scholar 

  37. W.J. Hehre, L. Radom, P.v.R. Schleyer and J.A. Pople, An Initio Molecular Orbital Theory (Wiley, New York, 1986).

    Google Scholar 

  38. (a) R.G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules (Oxford Univ. Press, Oxford, 1989); (b) J.K. Labanowski and J.W. Andzelm, eds., Density-functional Methods in Chemistry (Springer, New York, 1991).

    Google Scholar 

  39. M.V. Frash, V.B. Kazansky, A.M. Rigby and R.A. van Santen, J. Phys. Chem. B 101 (1997) 5346.

    CAS  Google Scholar 

  40. V.B. Kazansky, M.V. Frash and R.A. van Santen, Catal. Lett. 48 (1997) 61.

    Article  CAS  Google Scholar 

  41. M.V. Frash, V.B. Kazansky, A.M. Rigby and R.A. van Santen, J. Phys. Chem. B 102 (1998) 2232.

    CAS  Google Scholar 

  42. M. Boronat, P. Viruela and A. Corma, J. Phys. Chem. 100 (1996) 16514.

    Article  CAS  Google Scholar 

  43. S.J. Collins and P.J. O'Malley, Chem. Phys. Lett. 228 (1994) 246.

    Article  CAS  Google Scholar 

  44. A.M. Rigby and M.V. Frash, J. Molec. Catal. A 126 (1997) 61.

    Article  CAS  Google Scholar 

  45. M. Boronat, P. Viruela and A. Corma, J. Phys. Chem. A 102 (1998) 982.

    CAS  Google Scholar 

  46. M.V. Frash, M.A. Makarova and A.M. Rigby, J. Phys. Chem. B 101 (1997) 2116.

    CAS  Google Scholar 

  47. (a) H.B. Schlegel, in: New Theoretical Consepts for Understanding Organic Reactions, ed. J. Bertran (Kluwer Academic, Dordrecht, 1989) pp. 33–53; (b) M.J. Frisch, E. Frisch and J.B. Foresman, Gaussian94 User's Reference (Gaussian Inc., USA, 1995).

    Google Scholar 

  48. C. Peng, P.Y. Ayala, H.B. Schlegel and M.J. Frisch, J. Comp. Chem. 17 (1996) 49.

    Article  CAS  Google Scholar 

  49. C. Gonzalez and H.B. Schlegel, J. Chem. Phys. 90 (1989) 2154.

    Article  CAS  Google Scholar 

  50. V.B. Kazansky, I.N. Senchenya, M.V. Frash and R.A. van Santen, Catal. Lett. 27 (1994) 345.

    Article  CAS  Google Scholar 

  51. V.B. Kazansky, M.V. Frash and R.A. van Santen, Appl. Catal. A 146 (1996) 225.

    Article  CAS  Google Scholar 

  52. V.B. Kazansky, M.V. Frash and R.A. van Santen, unpublished results.

  53. S.J. Collins and P.J. O'Malley, J. Catal. 153 (1995) 94.

    Article  CAS  Google Scholar 

  54. S.J. Collins and P.J. O'Malley, Chem. Phys. Lett. 246 (1995) 555.

    Article  CAS  Google Scholar 

  55. V.B. Kazansky, M.V. Frash and R.A. van Santen, Catal. Lett. 28 (1994) 211.

    Article  CAS  Google Scholar 

  56. V.B. Kazansky, M.V. Frash and R.A. van Santen, Stud. Surf. Sci. Catal. 105 (1997) 2283.

    Google Scholar 

  57. J. Sommer, R. Jost and M. Hachoumy, Catal. Today 38 (1997) 309.

    Article  CAS  Google Scholar 

  58. D.M. Brouwer and H. Hogeveen, Progr. Phys. Org. Chem. 9 (1972) 179.

    CAS  Google Scholar 

  59. F. Chevalier, M. Guisnet and R. Maurel, in: Proceedings of the 6th International Congress on Catalysis, eds. G.C. Bond, P.B. Wells and F.C. Tompkins (The Chemical Society, London, 1977) p. 478.

    Google Scholar 

  60. J. Weitkamp, Ind. Eng. Chem. Prod. Res. Dev. 21 (1982) 550.

    Article  CAS  Google Scholar 

  61. G. Zi, C. Jian-min, H. Wei-ming and T. Yi, Stud. Surf. Sci. Catal. 90 (1994) 507.

    Google Scholar 

  62. H. Liu, G.D. Lei and W.M.H. Sachtler, Appl. Catal. A 137 (1996) 167.

    Article  CAS  Google Scholar 

  63. S. Carbo, J. Planelles, E. Orti, P. Viruela and F. Tomas, J. Mol. Struct. (THEOCHEM) 150 (1987) 33.

    Article  Google Scholar 

  64. M. Boronat, P. Viruela and A. Corma, J. Phys. Chem. 100 (1996) 633.

    Article  CAS  Google Scholar 

  65. M. Boronat, P. Viruela and A. Corma, Appl. Catal. A 146 (1996) 207.

    Article  CAS  Google Scholar 

  66. A.M. Rigby and M.V. Frash, unpublished results.

  67. G.J. Kramer and R.A. van Santen, J. Am. Chem. Soc. 115 (1993) 2887.

    Article  CAS  Google Scholar 

  68. E.A. Paukshtis and E.N. Yurchenko, Russian Chemical Reviews 52 (1983) 242.

    Article  Google Scholar 

  69. F.C. Jentoft and B.C. Gates, Topics in Catal. 4 (1997) 1.

    Article  CAS  Google Scholar 

  70. T.F. Narbeshuber, H. Vinek and J.A. Lercher, J. Catal. 157 (1995) 388.

    Article  CAS  Google Scholar 

  71. R.A. van Santen, Symposiun on Advances and Applications of Computational Chemical Modeling to Heterogeneous catalysis, Div. Petr. Chem., 213th Meeting, 1997, p. 66.

  72. T.N. Truong, J. Phys. Chem. B 101 (1997) 2750.

    CAS  Google Scholar 

  73. A. Corma, P.J. Miguel and A.V. Orchilles, J. Catal. 145 (1994) 171.

    Article  CAS  Google Scholar 

  74. F. Eder, M. Stockenhuber and J.A. Lercher, Stud. Surf. Sci. Catal. 97 (1995) 495.

    Article  CAS  Google Scholar 

  75. J.R. Hufton and R.P.A. Danner, AIChE J. 39 (1993) 954.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frash, M., van Santen, R. Quantum-chemical modeling of the hydrocarbon transformations in acid zeolite catalysts. Topics in Catalysis 9, 191–205 (1999). https://doi.org/10.1023/A:1019183110705

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019183110705

Navigation