Skip to main content
Log in

Crystal-structure-controlled tribological behavior ofcarbon-graphite seal materials in partial pressures of helium andhydrogen. I. Specimen characterization and fundamentalconsiderations

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Three commercially available carbon-graphite cryogenic materials(EC-5, M234 and P5N) that are used as seals in rocket turbopumpassemblies have been characterized as part of a larger study toelucidate their tribological characteristics in helium andhydrogen. This report (part I) documents the results ofstructural/chemical characterization that included XRD, Ramanspectroscopy, and AES/EELS. Outgasing studies were also performedusing TGA-FTIR. The data indicate that the EC-5 consists of wellgraphitized carbon with three-dimensional order and a nominalcrystallite size (Lc) of 50 nm. The materialalso contained turbostratic carbon with a d-spacing of0.340 nm and a crystallite size of 12 to 14 nm. The LiF-doped P5Ncontains a mixture of turbostratic carbons which show onlytwo-dimensional order, and has smaller crystallite sizes thanthose in EC-5. The M234 contains significant amounts of metallicsilver; the carbon is mostly amorphous with only a minorcrystalline (turbostratic?) component. EC-5 was found to beessentially outgasing-free, while heating of the turbostraticand/or amorphous materials yielded polar gases (e.g., CO andCO2) and, in the case of the M234, low molecularweight hydrocarbons. The relationship between thecrystallographic structure of these carbons and theirtribological performance is explored in parts II and III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hendricks, M.J. Braun, R.L. Mullen, R.E. Burcham and W.A. Diamond, NASA-TM-86928, 1985.

  2. S.T. Wu, NASA-CR-183573, September 1988.

  3. M. Oike, M. Nosaka, M. Kikuchi and Y. Watanabe, in: Proc. 18th Int. Symp. on Space Technology and Science, Kagoshima 1992, p. 143.

  4. R. Salant, P. Wolff and S. Navon, Tribol. Trans. 37 (1994) 189.

    Google Scholar 

  5. R.E. Franklin, Acta Cryst. 4 (1951) 253.

    Google Scholar 

  6. R.R. Paxton, Manufacted Carbon: A Self-Lubricating Material for Mechanical Devices (CRC Press, BocaRaton, 1979).

    Google Scholar 

  7. W. Shapiro and R. Hamm, NASA-CR-174866, November 1985.

  8. D.J. Nunez, PL-TR-94-3058, Vol. I, Rockwell Int. Corp., Rocketdyne Div., Canoga Park, CA, May 1995.

    Google Scholar 

  9. M.N. Gardos, WL-TR-93-4089, Part 2, Vol. 1, Hughes Aircraft Co., El Segundo, CA, August 1993.

    Google Scholar 

  10. T. Fujita, S. Matsumoto and T. Koga, Lubr. Eng. 43 (1987) 440.

    Google Scholar 

  11. M. Miyazawa, J. Izumi, Z. Uchibori, H. Tanoue and T. Fujita, Lubr. Eng. 44 (1988) 520.

    Google Scholar 

  12. M.N. Gardos, Tribol. Trans. 31 (1988) 214.

    Google Scholar 

  13. J.B. Aladekomo and R.H. Bragg, Carbon 28 (1990) 897.

    Google Scholar 

  14. R.H. Bragg and J.B. Aladekomo, J. Appl. Cryst. 28 (1995) 14.

    Google Scholar 

  15. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd Ed. (Wiley, New York, 1974).

    Google Scholar 

  16. J.W. Gardner and A.C. Anderson, J. Appl. Phys. 50 (1979) 3012.

    Google Scholar 

  17. D.B. Fischbach, The Chemistry and Physics of Carbon, Vol. 7, ed. P.L. Walker Jr. (Dekker, New York, 1971).

    Google Scholar 

  18. V.A. Drits and C. Tchoubar, in: X-ray Diffraction of Disordered Lamellar Structures (Springer, NewYork, 1991) p. 199.

    Google Scholar 

  19. D.S. Knight and W.B. White, J. Mater. Res. 4 (1989) 385.

    Google Scholar 

  20. R. Vidano and D.B. Fischbach, J. Am. Ceram. Soc. 61 (1978) 13.

    Google Scholar 

  21. K. Kaneko, C. Ishii, M. Ruike and H. Kuwabara, Carbon 7 (1992) 1075.

    Google Scholar 

  22. M.S. Dresselhouse and G. Dresselhouse, Adv. Phys. 30 (1981) 139; J.W. McClure, IBM J. 8 (1964) 255.

    Google Scholar 

  23. M.N. Gardos and B.L. Soriano, J. Mater. Res. 5 (1990) 2599.

    Google Scholar 

  24. M.N. Gardos, in: Synthetic Diamond: Emerging CVD Science and Technology, Electrochem. Soc.Monograph, eds. K.E. Spear and J.P. Dismukes (Wiley, NewYork, 1994) ch. 12, p. 419.

    Google Scholar 

  25. M.N. Gardos and K.V. Ravi, The Electrochem. Soc. Proc. Vol. 93-17 (1993) 401.

    Google Scholar 

  26. J.-M. Martin, Th. LeMogne, C. Donnet, N. Millard-Pinar, K.V. Ravi and M.N. Gardos, The Electrochem. Soc. Proc. Vol. 93-17 (1993) 947.

    Google Scholar 

  27. M.N. Gardos and K.V. Ravi, Dia. Films Technol. 4 (1994) 139.

    Google Scholar 

  28. M.N. Gardos, Tribol. Lett. 2 (1996) 173, 355.

    Google Scholar 

  29. M.N. Gardos, in: Protective Coatings and Thin Films: Synthesis, Characterization, and Applications, Proc. NATO Adv. Res. Workshop, NATO Adv. Sci. Inst. Ser. E (Kluwer Academic, Dordrecht) in press.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardos, M., Adams, P., Barrie, J. et al. Crystal-structure-controlled tribological behavior ofcarbon-graphite seal materials in partial pressures of helium andhydrogen. I. Specimen characterization and fundamentalconsiderations. Tribology Letters 3, 175–184 (1997). https://doi.org/10.1023/A:1019168702836

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019168702836

Keywords

Navigation