Skip to main content
Log in

Partitioning technique procedure revisited II: Application to the Stark and Zeeman problems in light atoms

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We show that the modified partitioning procedure can be applied to study the spherical and nonspherical Stark effect in the hydrogen atom and the spherical quadratic Zeeman effect in H-, the helium atom and He‐like ions: Li++, Be++, etc. We present ground‐state energy values for γ (in a.u.) in the interval 0.001 ≤ λ ≤ 0.2 (a.u.= 5.142·109 volts/cm) and for magnetic field γ (in a.u.) in the interval 0.1 ≤ γ ≤ 1.0 (a.u. = 2.353·109 gauss). We compare our results to values available in the literature; they are, in general, better than those obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.P. Alliluev and V.S. Popov, Zh. Eksp. Teor. Fiz. 104 (1993) 3569.

    CAS  Google Scholar 

  2. J. Austin, Mol. Phys. 42 (1981) 1391.

    Article  CAS  Google Scholar 

  3. L. Benassi and V. Grecchi, J. Phys. B: At. Mol. Phys. 13 (1980) 911.

    Article  CAS  Google Scholar 

  4. H.S. Brandi, Phys. Rev. A 11 (1976) 1835.

    Article  Google Scholar 

  5. B. Cabib, E. Fabri and G. Fiorio, Nuovo Cimento B 10 (1972) 185.

    Article  Google Scholar 

  6. D. Farrelly and W.P. Reinhardt, J. Phys. B: At. Mol. Phys. 16 (1983) 2103.

    Article  CAS  Google Scholar 

  7. G. Fonte, P. Falsaperla, G. Schiffrer and D. Stanzial, Phys. Rev. A 41 (1990) 5807.

    Article  CAS  Google Scholar 

  8. R.H. Garstang, Rep. Prog. Phys. 40 (1997) 105.

    Article  Google Scholar 

  9. A.V. Gluskov and L.N. Ivanov, J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 1379.

    Article  Google Scholar 

  10. J. Gómes and J. Sesma, Phys. Lett. A 219 (1996) 187.

    Article  Google Scholar 

  11. F.Y. Hajj, J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 613.

    Article  CAS  Google Scholar 

  12. J.W.R. Henry, R.F. O'Connell, R. Smith, G. Chanmugam and A.K. Rajagopal, Phys. Rev. D 9 (1974) 329 and references therein.

    Article  CAS  Google Scholar 

  13. M. Hehenberger, H.V. McItosh and E. Brändas, Phys. Rev. A 10 (1974) 1494.

    Article  CAS  Google Scholar 

  14. S.C. Kanavi and S.H. Patil, Phys. Rev. A 24 (1981) 331.

    Article  CAS  Google Scholar 

  15. J. Killingbeck, J. Phys. A 10 (1977) 199.

    Article  Google Scholar 

  16. J. Killingbeck, Phys. Lett. A 65 (1978) 87.

    Article  Google Scholar 

  17. J. Killingbeck, J. Phys. B: At. Mol. Phys. 12 (1979) 25.

    Article  CAS  Google Scholar 

  18. J. Killingbeck and S. Galicia, J. Phys. A 13 (1980) 3419.

    Article  Google Scholar 

  19. J.C. Le Guillou and J. Zinn-Justin, Ann. Phys. 147 (1983) 57.

    Article  CAS  Google Scholar 

  20. P.G. Logrado and J.D.M. Vianna, J. Math. Chem. 22 (1997) 107.

    Article  CAS  Google Scholar 

  21. P.O. Löwdin, J. Math. Phys. 3 (1962) 969; Phys. Rev. A 139 (1965) 357.

    Article  Google Scholar 

  22. R.O. Mueller, A.R.P. Rau and L. Spruch, Phys. Rev. A 11 (1975) 789 and references therein.

    Article  CAS  Google Scholar 

  23. V.S. Popov, V.D. Mur, A.V. Sergeev and V.M. Weinberg, Phys. Lett. A 149 (1990) 418.

    Article  CAS  Google Scholar 

  24. H.C. Praddaude, Phys. Rev. A 6 (1972) 132.

    Article  Google Scholar 

  25. W. Rösner, G. Wummer, H. Herold and H. Ruder, Phys. Rev. B 17 (1984) 29.

    Google Scholar 

  26. R. Silva and S. Canuto, Phys. Lett. A 88 (1982) 282.

    Article  Google Scholar 

  27. J.R. Silva and S. Canuto, Phys. Lett. A 101 (1984) 326.

    Article  Google Scholar 

  28. J. Silvestone, Phys. Rev. A 18 (1978) 1853.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logrado, P., Vianna, J. Partitioning technique procedure revisited II: Application to the Stark and Zeeman problems in light atoms. Journal of Mathematical Chemistry 26, 1–13 (1999). https://doi.org/10.1023/A:1019165307456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019165307456

Keywords

Navigation