Skip to main content
Log in

Derivation of closed analytical expressions for Rosen–Morse Franck–Condon factors

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The expressions for Rosen–Morse Franck–Condon factors derived previously yield a double sum with alternating terms. For higher values of the quantum number the numerical calculation of the Franck–Condon factors by electronic computers using these expressions leads to numerical overflow inspite of the use of double-precision (32 digits) arithmetic. High values for the quantum number in the final ground state of the Rosen–Morse potential occur in molecular nonradiative rate calculations. Furthermore, the expressions show a lack of clearness with respect to the parameters of the potential. For out-of-plane modes exact closed form expressions and exact recurrence relations are derived. Asymptotic expressions for the matrix elements are calculated. Exact closed form expressions for matrix elements with quantum numbers which correspond to regions close to the dissociation barrier are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions (Wiley, New York, 1970).

    Google Scholar 

  2. H. Ahmedov and I.H. Duru, J. Phys. A 30 (1997) 173.

    Article  Google Scholar 

  3. A.O. Barut and H. Beker, Europhys. Lett. 14 (1991) 197.

    Google Scholar 

  4. A.O. Barut and A. Inomata, International Atomic Agency, Miramare–Trieste, IC/87/2,3 (January 1987).

  5. A.O. Barut and A. Inomata and R. Wilson, J. Phys. A 20 (1987) 4083.

    Article  CAS  Google Scholar 

  6. M. Böhm and G. Junker, J. Math. Phys. 28 (1987) 1978.

    Article  Google Scholar 

  7. C. Brif, A. Vourdas and A. Mann, J. Phys. A 29 (1996) 5873.

    Article  Google Scholar 

  8. L.V. Chebotarev, J. Phys. A 29 (1996) 1465.

    Article  Google Scholar 

  9. Y.S. Choi and C.B. Moore, J. Chem. Phys. 110 (1993) 1111.

    Google Scholar 

  10. C. Daskaloyannis, J. Phys. A 25 (1992) 2261.

    Article  Google Scholar 

  11. M.J. Englefield, J. Math. Phys. 28 (1987) 827.

    Article  Google Scholar 

  12. S. Flüugge, Rechenmethoden der Quantenmechanik (Springer, Berlin, 1993).

    Google Scholar 

  13. A. Frank and K.B. Wolf, J. Math. Phys. 26 (1985) 973.

    Article  Google Scholar 

  14. T. Fukui, Phys. Lett. A 178 (1993) 1.

    Article  CAS  Google Scholar 

  15. J. Ge and J.Z.H. Zhang, J. Chem. Phys. 105 (1996) 8628.

    Article  CAS  Google Scholar 

  16. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, New York, 1980).

    Google Scholar 

  17. C. Grosche, Ann. Phys. 201 (1990) 258; 204 (1990) 208; 187 (1988) 110.

    Article  Google Scholar 

  18. C. Grosche, J. Phys. A 22 (1989) 5073; 23 (1990) 4885.

    Article  Google Scholar 

  19. C. Grosche, Fortschr. Phys. 38 (1990) 531.

    Google Scholar 

  20. C. Grosche, Desy 95-099 (May 1995); 89-049 (April 1989).

  21. M.E. Grypeos, G.A. Lalazissis, S.E. Massen and C.P. Panos, J. Phys. G 17 (1991) 1093.

    Article  CAS  Google Scholar 

  22. H. Hornburger and G.H.F. Diercksen, to be published.

  23. H. Hornburger and M. Melzig, Z. Phys. D, under revision.

  24. H. Hornburger, K.D. Reinsch, M. Melzig and S. Leach, Z. Phys. D 5 (1987) 151.

    Article  CAS  Google Scholar 

  25. L. Infeld and T.E. Hull, Rev. Modern Phys. 23 (1951) 21.

    Article  Google Scholar 

  26. G. Junker and M. Böhm, Phys. Lett. A 117 (1986) 375.

    Article  CAS  Google Scholar 

  27. Y. Kakiuti and T. Shimanouchi, J. Chem. Phys. 25 (1956) 1252.

    Article  Google Scholar 

  28. H. Kleinert and I. Mustapic, J. Math. Phys. 33 (1992) 643.

    Article  Google Scholar 

  29. C.G. Koutroulos, J. Phys. G 17 (1991) 1069.

    Article  CAS  Google Scholar 

  30. P.M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).

    Google Scholar 

  31. M.M. Nieto, Phys. Rev. A 17 (1978) 1273.

    Article  Google Scholar 

  32. D. Pertsch, J. Phys. A 23 (1990) 4145.

    Article  Google Scholar 

  33. G. Pöschl and E. Teller, Z. Phys. 83 (1933) 143.

    Article  Google Scholar 

  34. P. Pulay, G. Fogarasi and J.E. Boggs, J. Chem. Phys. 74 (1981) 3999.

    Article  CAS  Google Scholar 

  35. C. Quesne, J. Phys. A 21 (1988) 4487; 22 (1989) 3723.

    Article  Google Scholar 

  36. N. Rosen and P.M. Morse, Phys. Rev. 42 (1932) 210.

    Article  CAS  Google Scholar 

  37. O.P. Shadrin and N.I. Zhirnov, Opt. Spectr. 38 (1975) 367.

    Google Scholar 

  38. Y. Wu, J. Math. Phys. 31 (1990) 2586.

    Article  Google Scholar 

  39. J. Zuniga, M. Alacid, A. Requena and A. Bastida, Int. J. Quantum Chem. 57 (1996) 43.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornburger, H., Diercksen, G.H. Derivation of closed analytical expressions for Rosen–Morse Franck–Condon factors. Journal of Mathematical Chemistry 24, 39–60 (1998). https://doi.org/10.1023/A:1019154115691

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019154115691

Keywords

Navigation