Skip to main content
Log in

Successive continuation for locating connecting orbits

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

A successive continuation method for locating connecting orbits in parametrized systems of autonomous ODEs is considered. A local convergence analysis is presented and several illustrative numerical examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Aubry, P. Holmes, J. L. Lumley and E. Stone, The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mechanics 192 (1988) 115–173.

    Article  MATH  MathSciNet  Google Scholar 

  2. H. Beresticky and L. Nirenberg, Traveling fronts in cylinders, Ann. Inst. Henri Poincaré 9(5) (1992) 497–572.

    Google Scholar 

  3. W.-J. Beyn, The numerical computation of connecting orbits in dynamical systems, IMA J. Numer. Anal. 9 (1990) 379–405.

    MathSciNet  Google Scholar 

  4. W.-J. Beyn, Global bifurcations and their numerical computation, in: Continuation and Bifurcations: Numerical Techniques and Applications, eds. D. Roose et al. (Kluwer, Dordrecht, The Netherlands, 1990) pp. 169–181.

    Google Scholar 

  5. D. L. Brown, M. G. Forest, B. J. Miller and N. A. Petersson, Computation and stability of fluxons in a singularly perturbed sine-Gordon equation, SIAM J. Appl. Math. 54(4) (1994) 1048–1066.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Canale, The computation of paths of homoclinic orbits, Ph.D. Thesis, Department of Computer Science, University of Toronto, Toronto, Canada (1994).

    Google Scholar 

  7. A. R. Champneys and Yu. A. Kuznetsov, Numerical detection and continuation of codimension-two homoclinic orbits, Int. J. Bif. and Chaos 4(4) (1994) 785–822.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. R. Champneys, Yu. A. Kuznetsov and B. Sandstede, A numerical toolbox for homoclinic bifurcation analysis, Applied Nonlinear Mathematics Research Report No. 1.95, University of Bristol, Bristol, UK (1995).

    Google Scholar 

  9. L. O. Chua, C. W. Wu, A. Huang and C. Q. Zhong, A universal circuit for studying and generating chaos, Part I: Routes to chaos, IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications 10(40) (1993) 732–744. Special Issue on Chaos in Electronic Circuits, Part A.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Dieudonné, Foundations of Modern Analysis (Academic Press, 1960).

  11. B. Deng, Constructing homoclinic orbits and chaotic attractors, Int. J. Bif. and Chaos 4(4) (1994) 823–841.

    Article  MATH  Google Scholar 

  12. B. Deng, private communication (1995).

  13. E. J. Doedel and M. J. Friedman, Numerical computation of heteroclinic orbits, J. Comput. and Appl. Math. 26 (1989) 159–170.

    Article  MathSciNet  Google Scholar 

  14. E. J. Doedel, M. J. Friedman and J. Guckenheimer, On computing connecting orbits: general algorithm and application to the sine-Gordon and Hodgkin-Huxley equations, The IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science 77(11) (1994). Special Section on Nonlinear Theory and Its Applications.

  15. E. J. Doedel, M. J. Friedman and A. C. Monteiro, On locating connecting orbits, Appl. Math. and Comput. 65(1–3) (1994) 231–239.

    Article  MATH  MathSciNet  Google Scholar 

  16. E. J. Doedel, H. B. Keller and J. P. Kernévez, Numerical analysis and control of bifurcation problems, Part I: Bifurcation in finite dimensions, Int. J. Bif. and Chaos 1(3) (1991) 493–520; Part II: Bifurcation in infinite dimensions, Int. J. Bif. and Chaos 1(4) (1991) 745–772.

    Article  MATH  Google Scholar 

  17. E. J. Doedel, X. J. Wang and T. F. Fairgrieve, AUTO 94: Software for continuation and bifurcation problems in ordinary differential equations, Applied Mathematics Report, California Institute of Technology (1994).

  18. E. Freire, L. G. Franquelo and J. Aracil, Periodicity and chaos in an autonomous electronic circuit, IEEE Transactions on Circuits and Systems CAS 31(3) (1984) 237–247. 124 E. J. Doedel et al. / Successive continuation for locating connecting orbits

    Article  MathSciNet  Google Scholar 

  19. E. Freire, A. J. Rodríguez-Luis, E. Gamero and E. Ponce, A case study for homoclinic chaos in an autonomous electronic circuit, Physica D 62 (1993) 230–243.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. J. Friedman, Numerical analysis and accurate computation of heteroclinic orbits in the case of center manifolds, J. Dynam. Diff. Eq. 5(1) (1993) 59–87.

    Article  MATH  Google Scholar 

  21. M. J. Friedman and E. J. Doedel, Numerical computation and continuation of invariant manifolds connecting fixed points, SIAM J. Numer. Anal. 28(3) (1991) 789–808.

    Article  MATH  MathSciNet  Google Scholar 

  22. M. J. Friedman and E. J. Doedel, Computational methods for global analysis of homoclinic and heteroclinic orbits: a case study, J. Dynam. Diff. Eq. 5(1) (1993) 37–58.

    Article  MATH  MathSciNet  Google Scholar 

  23. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins Univ. Press, 1989).

  24. P. Gray and S. K. Scott, Chemical Oscillations and Instabilities: Nonlinear Chemical Kinetics (Oxford, 1990).

  25. H. B. Keller, Global homotopies and Newton's methods, in: Recent Advances in Numerical Analysis (Academic Press, 1978) pp. 73–94.

  26. S. Lang, Introduction to Differential Manifolds (Interscience, New York, 1962).

    Google Scholar 

  27. M. Lentini and H. B. Keller, Boundary value problems over semi infinite intervals and their numerical solution, SIAM J. Numer. Anal. 17 (1980) 557–604.

    Article  MathSciNet  Google Scholar 

  28. B. A. Malomed and R. S. Tasgal, Vibration modes of a gap soliton in nonlinear optical medium, Phys. Rev. E 49(6) (1994) 5787–5796.

    Article  Google Scholar 

  29. F. C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers (Wiley, New York, 1987).

    MATH  Google Scholar 

  30. J. Rinzel and G. B. Ermentrout, Analysis of neural excitability and oscillations, in: Methods in Neural Modeling: From Synapses to Networks, eds. C. Koch and I. Sedev (MIT Press, Cambridge, MA, 1989).

    Google Scholar 

  31. A. J. Rodríguez-Luis, E. Freire and E. Ponce, A method of homoclinic and heteroclinic continuation in two and three dimensions, in: Continuation and Bifurcations: Numerical Techniques and Applications, eds. D. Roose et al. (Kluwer, Dordrecht, The Netherlands, 1990) pp. 197–210.

    Google Scholar 

  32. B. Sandstede, Convergence estimates for the nunerical approximation of homoclinic solutions, Preprint No. 198, Weierstrass-Institut f #x00FC;r Angewandte Analysis und Stochastik, Berlin (1995).

  33. S. Schecter, Numerical computation of saddle-node homoclinic bifurcation points, SIAM J. Numer. Anal. 30(4) (1993) 1155–1178.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doedel, E.J., Friedman, M.J. & Kunin, B.I. Successive continuation for locating connecting orbits. Numerical Algorithms 14, 103–124 (1997). https://doi.org/10.1023/A:1019152611342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019152611342

Navigation