Skip to main content
Log in

Improvement of the formal and numerical estimation of the constant in some Markov-Bernstein inequalities

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Some methods of numerical analysis, used for obtaining estimations of zeros of polynomials, are studied again, more especially in the case where the zeros of these polynomials are all strictly positive, distinct and real. They give, in particular, formal lower and upper bounds for the smallest zero. Thanks to them, we produce new formal lower and upper bounds of the constant in Markov-Bernstein inequalities in L 2 for the norm corresponding to the Laguerre and Gegenbauer inner products. In fact, since this constant is the inverse of the square root of the smallest zero of a polynomial, we give formal lower and upper bounds of this zero. Moreover, a new sufficient condition is given in order that a polynomial has some complex zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Borwein and T. Erdélyi, Polynomials and Polynomial Inequalities (Springer, Berlin, 1995).

    Google Scholar 

  2. C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials, International Series of Numerical Mathematics, Vol. 50 (Birkhäuser, Basel, 1980).

    Google Scholar 

  3. L. Derwidué, Introduction à l'Algèbre Supérieure et au Calcul Numérique Algébrique (Masson, Paris, 1957).

    Google Scholar 

  4. P. Dörfler, New inequalities of Markov type, SIAM J. Math. Anal. 18 (1987) 490–494.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Draux, Polynômes Orthogonaux Formels. Applications, Lecture Notes in Mathematics, Vol. 974 (Springer, Berlin, 1983).

    Google Scholar 

  6. A. Draux and C. Elhami, On the positivity of some bilinear functionals in Sobolev spaces, J. Comput. Appl. Math. 106 (1999) 203–243.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Durand, Solutions Numériques des équations Algébriques (Masson, Paris, 1960).

    Google Scholar 

  8. P. Henrici, Applied and Computational Complex Analysis, Vol. 1, Power Series-Interpolation-Conformal Mapping-Location of Zeros (Wiley, New-York, 1974).

    Google Scholar 

  9. Oeuvres de Laguerre, Publiées sous les auspices de l'Académie des Sciences par MM. Ch. Hermite, H. Poincaré et E. Rouché, Tome I-Algèbre-Calcul intégral (Gauthier-Villars, Paris, 1898).

  10. E. Laguerre, Sur une méthode pour obtenir par approximation les racines d'une équation algébrique qui a toutes ses racines réelles, Nouvelles Annales de Mathématiques, 2e série, vol. 19 (1880).

  11. G.V. Milovanovi?, D.S. Mitrinovi? and Th.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific, Singapore, 1994).

    Google Scholar 

  12. S. Rafalson, Some sharp inequalities for algebraic polynomials, J. Approx. Theory 95 (1998) 161–177.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 5 (1954) 233–251.

    Article  MATH  MathSciNet  Google Scholar 

  14. H. Rutishauser, Eine Formel von Wronski und ihre Bedeutung für den Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 7 (1956) 164–169.

    Article  MATH  MathSciNet  Google Scholar 

  15. E. Schmidt, Ñber die nebst ihren Ableitungen orthogonalen Polynomensysteme und das zugehörige Extremum, Math. Ann. 119 (1944) 165–204.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Turán, Remark on a theorem of Erhard Schmidt, Mathematica 2 (25) (1960) 373–378.

    MATH  Google Scholar 

  17. S. Wolfram, The Mathematica Book, 3rd ed. (Wolfram Media/Cambridge Univ. Press, Cambridge, 1996).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draux, A. Improvement of the formal and numerical estimation of the constant in some Markov-Bernstein inequalities. Numerical Algorithms 24, 31–58 (2000). https://doi.org/10.1023/A:1019132924372

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019132924372

Navigation