Skip to main content
Log in

Numerical bifurcation and stability analysis for steady-states of reaction diffusion equations

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Solutions \(u \in H_0^1 (\Omega ) \cap H^2 (\Omega )\) of a semilinear elliptic boundary value problem, \(Au + f(x,u,\lambda ) = 0\) (with \(f_u (x,u,\lambda )\) bounded below) can be put into a one-to-one correspondence with zeros \(c \in \mathbb{R}^d \) of a function \(c \to B(c,\lambda ) \in \mathbb{R}^d \). Often d is small. The function \(B(c,\lambda )\) is called the bifurcation function. It can also be shown that the eigenvalues of the matrix \(B_c (c,\lambda )\) characterize the stability properties of the solutions of the elliptic problem as rest points of \(u_t + Au + f(x,u,\lambda ) = 0\). A finite element method that can be used for computing B and B c has recently been proposed. An overview of these results and the finite element method is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Cesari, Functional analysis, nonlinear differential equations, and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, eds. Cesari, Kannan and Schuur (Marcel Dekker, New York, 1976) pp. 1–197.

    Google Scholar 

  2. S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory (Springer, New York, 1983).

    Google Scholar 

  3. P. Ciarlet, The Finite Element Method for Elliptic Problems (North-Holland, Amsterdam, 1978).

  4. C. Foias and R. Temam, —Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation, Ann. Scuola Norm Sup.-Pisa 5(IV) (1978) 29–63.

    MATH  MathSciNet  Google Scholar 

  5. D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, New York, 1983).

    Google Scholar 

  6. J. K. Hale, Asymptotic Behavior of Dissipative Systems (Amer. Math. Soc., Providence, RI, 1988).

  7. D. Henry, Geometric Theory of Semilinear Parabolic Equations (Springer, New York, 1981).

    Google Scholar 

  8. M. Marion and R. Temam, Nonlinear Galerkin methods - the finite element case, Numer. Math. 57 (1990) 205–226.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Smiley, Global attractors and approximate inertial manifolds for nonautonomous dissipative equations, Applicable Analysis 50 (1993) 217–241.

    MATH  MathSciNet  Google Scholar 

  10. M. Smiley, A finite element method for computing the bifurcation function for semilinear elliptic BVP's, J. Comp. Appl. Math. 70 (1996) 311–327.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Smiley, A global version of the principle of reduced stability, Preprint to appear.

  12. G. Strang and G. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973).

    Google Scholar 

  13. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, New York, 1988).

    Google Scholar 

  14. E. Titi, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl. 149 (1990) 540–557.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smiley, M.W. Numerical bifurcation and stability analysis for steady-states of reaction diffusion equations. Numerical Algorithms 14, 211–225 (1997). https://doi.org/10.1023/A:1019117130906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019117130906

Navigation