Skip to main content
Log in

A nonstandard multigrid method with flexible multiple semicoarsening for the numerical solution of the pressure equation in a Navier-Stokes solver

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Numerical methods for the incompressible Reynolds-averaged Navier-Stokes equations discretized by finite difference techniques on collocated cell-centered structured grids are considered in this paper. A widespread solution method to solve the pressure-velocity coupling problem is to use a segregated approach, in which the computational work is deeply controlled by the solution of the pressure problem. This pressure equation is an elliptic partial differential equation with possibly discontinuous or anisotropic coeffficients. The resulting singular linear system needs efficient solution strategies especially for 3-dimensional applications. A robust method (close to MG-S [22,34]) combining multiple cell-centered semicoarsening strategies, matrix-independent transfer operators, Galerkin coarse grid approximation is therefore designed. This strategy is both evaluated as a solver or as a preconditioner for Krylov subspace methods on various 2- or 3-dimensional fluid flow problems. The robustness of this method is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Behie and P. Forsyth, Multigrid solution of three-dimensional problems with discontinous coefficients, Appl. Math. Comput. 13 (1983) 229-240.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Brandt, Guide to multigrid development, in: Proceedings: Multigrid Methods, eds.W. Hackbusch and U. Trottenberg, Köln-Porz (Springer, Berlin, 1982) pp. 220-312.

    Google Scholar 

  3. A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comp. 31 (1977) 333-390.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Brandt, Barriers to achieving Textbook Multigrid Efficiency (TME) in CFD, Icase Interim Report No. 32 (1998).

  5. J.E. Dendy, Black box multigrid, J. Comput. Phys. 48 (1982) 366-386.

    Article  MATH  MathSciNet  Google Scholar 

  6. G.B. Deng, J. Piquet, P. Queutey and M. Visonneau, Navier-Stokes equations for incompressible flows: Finite-difference and finite-volume methods, in: Handbook of Computational Fluid Mechanics, ed. R. Peyret (Academic Press, New York, 1996) pp. 25-97.

    Google Scholar 

  7. P.M de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl. Math. 33 (1990) 1-27.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Francescatto and A. Dervieux, Semi-coarsening for agglomeration multigrid: Application to turbulent flows, Internat. J. Numer. Methods Fluids 26 (1998) 927-957.

    Article  MATH  Google Scholar 

  9. U. Ghia, K.N. Ghia and C. Shin, High Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys. 48 (1982) 387-411.

    Article  MATH  Google Scholar 

  10. E. Guilmineau, J. Piquet and P. Queutey, Two-dimensional turbulent viscous flows past airfoils at fixed incidence, Comput. & Fluids 26 (1997) 135-162.

    Article  MATH  Google Scholar 

  11. W. Hackbusch, Multigrid Methods and Applications (Springer, Berlin, 1985).

    Google Scholar 

  12. W. Hackbusch, The frequency domain decomposition multigrid method, Part I: Application to anisotropic equations, Numer. Math. 56 (1989) 229-245.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. Horton and S. Vandewalle, A space-time multigrid method for parabolic pdes, SIAM J. Sci. Comput. 16(4) (1995) 848-864.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Kettler and P. Wesseling, Aspects of multigrid methods for problems in three dimensions, Appl. Math. Comput. 19 (1986) 159-168.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Khalil, Analysis of linear multigrid methods for elliptic differential equations with discontinous and anisotropic coefficients, Ph.D. thesis, Department of Technical Mathematics and Informatics, University of Technology, Delft (1989).

    Google Scholar 

  16. M. Khalil and P. Wesseling, Vertex-centered and cell-centered multigrid for interface problems, J. Comput. Phys. 98 (1992) 1-10.

    Article  MATH  Google Scholar 

  17. D.J. Mavripilis, Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes, Icase Report 98-6 (1998).

  18. O.A. McBryan, P. Frederickson, J. Linden, A. Schüller, K. Solchenbach, K. Stüben, C. Thole and U. Trottenberg, Multigrid methods on parallel computers-a survey of recent developments, Impact. Comput. Sci. Engrg. 3 (1991) 1-75.

    Article  MATH  MathSciNet  Google Scholar 

  19. W.A. Mulder, A new multigrid approach to convection problems, J. Comput. Phys. 83 (1989) 303-323.

    Article  MATH  MathSciNet  Google Scholar 

  20. W.A. Mulder, A high-resolution Euler solver based on multigrid, semicoarsening and defect correction, J. Comput. Phys. 100 (1992) 91-104.

    Article  MATH  MathSciNet  Google Scholar 

  21. N.H. Naik and J. van Rosendale, The improved robustness of multigrid elliptic solvers based on multiple semicoarsened grids, SIAM J. Numer. Anal. 30 (1993) 215-229.

    Article  MATH  MathSciNet  Google Scholar 

  22. C.W. Oosterlee, The convergence of parallel multiblock multigrid methods, Appl. Numer. Math. 19 (1995) 115-128.

    Article  MATH  MathSciNet  Google Scholar 

  23. C.W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a preconditioner for singular perturbed problems, SIAM J. Sci. Comput. 19(1) (1998) 87-110.

    Article  MATH  MathSciNet  Google Scholar 

  24. C.W. Oosterlee, P. Wesseling, A. Segal and E. Brakkee, Benchmark solutions for the incompressible Navier-Stokes equations in general coordinates on staggered grids, Internat. J. Numer. Methods Fluids 17 (1993) 301-321.

    Article  MATH  Google Scholar 

  25. J. Piquet and X. Vasseur, Multigrid preconditioned Krylov subspace methods for the threedimensional numerical solution of the incompressible Navier-Stokes equations, Numer. Algorithms 17 (1998) 1-32.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. Piquet and M. Visonneau, Computation of the flow past shiplike hulls, Comput. & Fluids 19(2) (1991) 183-215.

    Article  MATH  Google Scholar 

  27. Y. Saad and M. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.

    Article  MATH  MathSciNet  Google Scholar 

  28. H. Stone, Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Numer. Anal. 5 (1968) 530-558.

    Article  MATH  MathSciNet  Google Scholar 

  29. C.A. Thole and U. Trottenberg, Basic smoothing procedures for the multigrid treatment of elliptic 3D-operators, Appl. Math. Comput. 19 (1986) 333-345.

    Article  MATH  MathSciNet  Google Scholar 

  30. H.A. Van Der Vorst, BiCGSTAB: a fast and smoothly converging variant of BiCG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631-644.

    Article  MATH  MathSciNet  Google Scholar 

  31. R.S. Varga, Matrix Iterative Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1962)

    Google Scholar 

  32. X. Vasseur, Etude numérique de techniques d'accélération de convergence lors de la résolution des équations de Navier-Stokes, Ph.D. thesis, Université de Nantes (1998).

  33. T. Washio and C.W. Oosterlee, Experiences with robust parallel multilevel preconditioners for BiCGSTAB, GMD Arbeitspapier 949, Gesellschaft für Mathematik und Datenverarbeitung, Sankt-Augustin, Germany (1995).

  34. T. Washio and C.W. Oosterlee, Flexible multiple semicoarsening for three-dimensional singularly perturbed problems, SIAM J. Sci. Comput. 19(5) (1998) 1646-1666.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Wesseling, Cell-centered multigrid for interface problems, J. Comput. Phys. 79 (1988) 85-91.

    Article  MATH  MathSciNet  Google Scholar 

  36. P. Wesseling, An Introduction to Multigrid Methods (Wiley, Chichester, 1992).

    Google Scholar 

  37. D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries (Griffin, London, 1993).

    Google Scholar 

  38. G. Wittum, On the robustness of ILU-smoothing, in: 4th GAMM-Seminar on Robust Multigrid Methods, ed. W. Hackbusch, Notes on Numerical Fluid Mechanics, Vol. 23 (1988) pp. 217-239.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piquet, J., Vasseur, X. A nonstandard multigrid method with flexible multiple semicoarsening for the numerical solution of the pressure equation in a Navier-Stokes solver. Numerical Algorithms 24, 333–355 (2000). https://doi.org/10.1023/A:1019113814803

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019113814803

Navigation