Skip to main content

Topological rubber gloves

Abstract

This paper introduces the concept of a topological rubber glove and gives several examples. In particular, we prove that the knot 817 and the molecular graph of a single stranded DNA figure eight knot are topological rubber gloves. Then, we present an embedded graph which is not only a topological rubber glove, but has the additional property that no embedding of the graph can be rotated to its mirror image

This is a preview of subscription content, access via your institution.

References

  1. J.-C. Chambron, J.-P. Sauvage and K. Mislow, A chemically achiral molecule with no rigid achiral presentations, J. Am. Chem. Soc. (1997) 9558–9559.

  2. S. Du and N. Seeman, Synthesis of a DNA knot containing both positive and negative nodes, J. Am. Chem. Soc. 114 (1992) 9652–9655.

    CAS  Article  Google Scholar 

  3. E. Flapan, Rigid and non-rigid achirality, Pacific J. Math. 129 (1987) 57–66.

    Google Scholar 

  4. E. Flapan, Symmetries of Möbius ladders, Math. Ann. 283 (1989) 271–283.

    Article  Google Scholar 

  5. E. Flapan, Rigid and flexible symmetries of embedded graphs, New J. Chem. 17 (1993) 645–653.

    CAS  Google Scholar 

  6. E. Flapan and N. Seeman, A topological rubber glove obtained from a synthetic single-stranded DNA molecule, J. Chem. Soc. Chem. Comm. (1995) 2249–2250.

  7. N. van Gulick, Theoretical aspects of the linked ring problem, New J. Chem. 17 (1993) 619–625.

    CAS  Google Scholar 

  8. A. Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad. Series A 55 (1979) 399–402.

    Article  Google Scholar 

  9. K. Kuratowski, Sur le problème des courbes gauches en topologie, Fund. Math. 15 (1930) 271–283.

    Google Scholar 

  10. C. Liang and K. Mislow, Topological features in proteins: knots and links, J. Am. Chem. Soc. 117 (1995) 4201–4213.

    CAS  Article  Google Scholar 

  11. K. Mislow, Limitations of the symmetry criteria for optical inactivity and resolvability, Science 120 (1954) 232–233.

    CAS  Google Scholar 

  12. K. Mislow and R. Bolstad, Molecular dissymetry and optical inactivity, J. Am. Chem. Soc. 77 (1955) 6712–6713.

    CAS  Article  Google Scholar 

  13. D. Rolfsen, Knots and Links (Publish or Perish Press, Berkeley, 1976).

    Google Scholar 

  14. J. Simon, Topological chirality of certain molecules, Topology 25 (1986) 229–235.

    Article  Google Scholar 

  15. P.A. Smith, Transformations of finite period II, Ann. Math. 40 (1939) 690–711.

    Article  Google Scholar 

  16. D. Walba, Stereochemical topology, in: Chemical Applications of Topology and Graph Theory, ed. R.B. King, Studies in Physical and Theoretical Chemistry, Vol. 28 (Elsevier, Amsterdam, 1983) pp. 17–32.

    Google Scholar 

  17. D. Walba, Molecular chirality and other tidbits in stereochemistry, in: New Developments in Molecular Chirality, ed. P.G. Mezey (Kluwer, Dordrecht, 1991) pp. 119–129.

    Google Scholar 

  18. D. Walba, J. Armstrong, A. Perry, R. Richards, T. Homan and R. Haltiwanger, The thyme polyethers. An approach to the synthesis of a molecular knotted ring, Tetrahedron 42 (1986) 1883–1894.

    CAS  Article  Google Scholar 

  19. D. Walba, R. Richards and R.C. Haltiwanger, Total synthesis of the first molecular Möbius strip, J. Am. Chem. Soc. 104 (1982) 3219–3221.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Flapan, E. Topological rubber gloves. Journal of Mathematical Chemistry 23, 31–49 (1998). https://doi.org/10.1023/A:1019113006605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019113006605

Keywords

  • Order Orientation
  • Molecular Graph
  • Orientation Preserve
  • Simple Closed Curve
  • Simple Closed Curf