Skip to main content

Comparing impacts across climate models


In this paper we combine a climate-forecasting model, COSMIC, with a global impact model, GIM, to compare the market impacts of climate change projected by 14 general circulation models. Given a specific date (2100), carbon dioxide concentration (612 ppmv), and global temperature sensitivity (2.5°C), predicted impacts to economies are calculated using climate-response functions from Experimental and Cross-sectional evidence. The Cross-sectional impact model predicts small global benefits across all climate models, whereas the Experimental impact model predicts a range from small benefits to small damages. High-latitude countries are less sensitive to temperature increases than low-latitude countries because they are currently cool. Uniform global temperature changes overestimate global damages because they underestimate the benefits in polar regions and overestimate the damages in tropical regions compared to the GCM predictions.

This is a preview of subscription content, access via your institution.


  1. [1]

    C. Azar, Weight factors in cost-benefit analysis of climate change, Env. and Res. Econ. 13 (1999) 249–268.

    Google Scholar 

  2. [2]

    G.J. Boer, N. McFarlane and M. Lazare, Greenhouse gas induced climate change simulated with the Canadian Climate Centre second generation general circulation model, J. Clim. 5 (1992) 1045–1077.

    Google Scholar 

  3. [3]

    S.J. Cohen, G.J. Boer, N. McFarlane, J.P. Blanchet, M. Lazare, N.E. Sargent, F.G. Majaess, D.P. Phillips, M. Webb and T. Cutler, Application of the Canadian Climate Center general circulation model output for regional climate impact studies, Canadian Climate Centre, Downsview, Ontario, Canada (1990).

    Google Scholar 

  4. [4]

    S. Fankhauser, Valuing Climate Change, The Economics of the Greenhouse (Earthscan, London, 1995).

    Google Scholar 

  5. [5]

    S. Fankhauser, R. Tol and D. Pearce, The aggregation of climate change damages: A welfare theoretic approach, Env. and Res. Econ. 10 (1997) 249–266.

    Google Scholar 

  6. [6]

    W.L. Gates, A. Henderson-Sellers, C. Boer, A. Folland, B. Kitoh, F. McAvaney, N. Semazzi, A. Smith, Q. Weaver and C. Zeng, Climate models – evaluation, in: Climate Change 1995: The Science of Climate Change, eds. J.T. Houghton et al. (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  7. [7]

    J. Hansen, G. Russell, D. Rind, P. Stone, A. Lacis, S. Lebedeff, R. Ruedy and L. Travis, Efficient three-dimensional global models for climate studies: Models I and II, Mon. Wea. Rev. 111 (1983) 609–662.

    Google Scholar 

  8. [8]

    J. Hansen, A. Lacis, D. Rind, L. Russell, P. Stone, I. Fung, R. Ruedy and J. Lerner, Climate sensitivity: Analysis of feedback mechanisms, in: Climate Processes and Climate Sensitivity, Geophys. Monogr. Vol. 29, eds. J. Hansen and T. Takahashi (American Geophysical Union, Washington, DC, 1984) pp. 130–163.

    Google Scholar 

  9. [9]

    J. Hansen, I. Fung, A. Lacis, D. Rind, S. Lebedeff, R. Ruedy, L. Russell and P. Stone, Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model, J. Geophys. Res. 93 (1988) 9341–9364.

    Google Scholar 

  10. [10]

    T.L. Hart, W. Bourke, B.J. McAvaney, B.W. Forgan and J.L. McGregor, Atmospheric general circulation simulations with the BMRC global spectral model: The impact of revised physical parameterizations, J. Clim. 3 (1990) 436–459.

    Google Scholar 

  11. [11]

    A. Henderson-Sellers, R.E. Dickinson, T.B. Durbidge, P.J. Kennedy, K. McGuffie and A.J. Pitman, Tropical deforestation: Modelling local to regional-scale climate change, J. Geophys. Res. 98 (1993) 7289–7315.

    Google Scholar 

  12. [12]

    C. Hope, J. Anderson and P. Wenman, Policy analysis of the greenhouse effect: An application of the PAGE model, Energy Policy 21 (1993) 327–338.

    Google Scholar 

  13. [13]

    J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg and K. Maskell, eds., Climate Change 1995: The Science of Climate Change (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  14. [14]

    M. Hulme, S.C. Raper and T.M. Wigley, An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC), Energy Policy 23 (1995a) 347–355.

    Google Scholar 

  15. [15]

    M. Hulme, T. Jiang and T.M. Wigley, SCENGEN, a climate change scenario generator, a user manual, Climatic Research Unit, University of East Anglia, Norwich, UK (1995b).

    Google Scholar 

  16. [16]

    A. Manne, R. Mendelsohn and R. Richels, MERGE: A model for evaluating regional and global effects of GHG reduction policies, Energy Policy 23 (1993) 17–34.

    Google Scholar 

  17. [17]

    N.A. McFarlane, G.J. Boer, J.P. Blanchet and M. Lazare, The Canadian Climate Centre second generation general circulation model and its equilibrium climate, J. Clim. 5 (1992) 1013–1044.

    Google Scholar 

  18. [18]

    R. Mendelsohn and M.E. Schlesinger, Climate-response functions, Ambio 28 (1999) 362–366.

    Google Scholar 

  19. [19]

    R. Mendelsohn, W. Morrison, M.E. Schlesinger and N.G. Andronova, Country-specific market impacts of climate change, Climatic Change (1999), in press.

  20. [20]

    R. Mendelsohn and J. Neumann, eds., The Economic Impact of Climate Change on the United States Economy (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  21. [21]

    W.D. Nordhaus, To slow or not to slow, Econ. J. 5 (1991) 920–937.

    Google Scholar 

  22. [22]

    W.D. Nordhaus, Managing the Global Commons: The Economics of Climate Change (The MIT Press, Cambridge, 1994).

    Google Scholar 

  23. [23]

    B.D. Santer, T.M. Wigley, M.E. Schlesinger and J.F. Mitchell, Developing climate scenarios from equilibrium GCM results, Report No. 47, Max-Planck-Institut f¨ur Meteorologie, Hamburg, Germany, 1990.

    Google Scholar 

  24. [24]

    M.E. Schlesinger and N. Andronova, Regional climate-change scenarios based on 2?CO2 and 4? CO2 equilibrium climate-changes simulated by the UIUC atmospheric general circulation/mixed-layer ocean model, Report to EPRI, Urbana, IL, 1994.

  25. [25]

    M.E. Schlesinger and L.J. Williams, COSMIC – Country Specific Model for Intertemporal Climate, Computer Software, Electric Power Research Institute, Palo Alto, 1997.

    Google Scholar 

  26. [26]

    M.E. Schlesinger and Z.C. Zhao, Seasonal climate changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/mixedlayer ocean model, J. Clim. 2 (1989) 459–495.

    Google Scholar 

  27. [27]

    M.E. Schlesinger, N. Andronova, A. Ghanem, S. Malyshev, T. Reichler, E. Rozanov, W. Wang and F. Yang, Geographical scenarios of greenhouse gas and anthropogenic-sulfate aerosol induced climate changes, Climate Research Group, Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 1997a.

    Google Scholar 

  28. [28]

    M.E. Schlesinger, N. Andronova, B. Entwistle, A. Ghanem, N. Ramankutty, W. Wang and F. Yang, Modeling and simulation of climate and climate change, in: Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models. Proceedings of the International School of Physics “Enrico Fermi” CXXXIII, eds. G. Castagnoli and A. Provenzale (IOS Press, Amsterdam, 1997b).

    Google Scholar 

  29. [29]

    M.E. Schlesinger, N. Andronova, A. Ghanem, S. Malyshev, E. Rozanov, W. Wang and F. Yang, Geographical scenarios of greenhouse gas and anthropogenic-sulfate aerosol induced climate change, Do We Understand Global Climate Change? (Norwegian Academy of Technological Sciences, Oslo, 1998).

    Google Scholar 

  30. [30]

    M.E. Schlesinger, S. Malyshev, E.V. Rozanov, F. Yang and N.G. Andronova, Geographical Distributions of Temperature Change for 48 R. Mendelsohn et al. / Comparing impacts across climate models the SRES Scenarios of Greenhouse Gas and Sulfur Dioxide Emissions. Technological Forecasting and Social Change, 1999, submitted.

  31. [31]

    S.L. Thompson and D. Pollard, A global climate model (GENESIS) with a land surface transfer scheme (LSX) Part 1. Present climate simulation, J. Clim. 8 (1995) 732–761.

    Google Scholar 

  32. [32]

    R. Tol, The damage costs of climate change: Towards more comprehensive calculations, Env. and Res. Econ. 5 (1995) 353–374.

    Google Scholar 

  33. [33]

    W.C. Wang, M.P. Dudek and X. Liang, Inadequacy of effective CO2 as a proxy to assess the greenhouse effect of other radiative gases, Geophys. Res. Lett. 19 (1992) 1375–1378.

    Google Scholar 

  34. [34]

    W. Washington and G. Meehl, Greenhouse sensitivity experiments with penetrative cumulus convection and tropical cirrus albedo effects, Clim. Dyn. 8 (1992) 211–233.

    Google Scholar 

  35. [35]

    R.T. Wetherald and S. Manabe, An investigation of cloud cover change in response to thermal forcing, Climatic Change 8 (1986) 5–23.

    Google Scholar 

  36. [36]

    R.T. Wetherald and S. Manabe, Cloud feedback processes in a general circulation model, J. Atmos. Sci. 45 (1988) 1397–1415.

    Google Scholar 

  37. [37]

    T.M. Wigley, R. Richels and J.A. Edmonds, Alternative emissions pathways for stabilizing CO2 concentrations, Nature 379 (1996) 240–243.

    Google Scholar 

  38. [38]

    C.A. Wilson and J.F. Mitchell, A doubled CO2 climate sensitivity experiment with a global climate model including a simple ocean, J. Geophys. Res. 92 (1987) 13,315–13,343.

    Google Scholar 

  39. [39]

    G.W. Yohe and M.E. Schlesinger, Sea level change: The expected economic cost of protection or abandonment in the United States, Climatic Change 38 (1998) 447–472.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mendelsohn, R., Schlesinger, M. & Williams, L. Comparing impacts across climate models. Integrated Assessment 1, 37–48 (2000).

Download citation


  • General Circulation Model
  • Temperature Sensitivity
  • Global Temperature
  • Carbon Dioxide Concentration
  • Impact Model