Skip to main content
Log in

Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Some embedded Runge-Kutta methods for the numerical solution of the eigenvalue Schrödinger equation are developed. More specifically, a new embedded modified Runge-Kutta 4(6) Fehlberg method with minimal phase-lag and a block embedded Runge-Kutta-Fenlberg method are developed. For the numerical solution of the eigenvalue Schrödinger equation we investigate two cases. (i) The specific case, in which the potential V x is an even function with respect to x. It is assumed, also, that the wavefunctions tend to zero for x → ± ∞. (ii) The general case for the well-known cases of the Morse potential and Woods-Saxon or Optical potential. Numerical and theoretical results show that the new approaches are more efficient compared with the well-known Runge-Kutta-Fehlberg 4(5) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gh. Adam, L.Gr. Ixaru and A. Corciovei, A first-order perturbative numerical method for the solution of the radial Schrödinger equation, J. Comput. Phys. 22 (1976) 1–33.

    Article  Google Scholar 

  2. N. Bessis and G. Bessis, A note on the Schrödinger equation for the x 2 + λx 2 /(1 + gx 2) potential, J. Math. Phys. 21 (1980) 2780–2785.

    Article  Google Scholar 

  3. L. Brusa and L. Nigro, A one-step method for direct integration of structural dynamical equations, Internat. J. Numer. Methods Engrg. 15 (1980) 685–699.

    Article  Google Scholar 

  4. J.R. Cash, A.D. Raptis and T.E. Simos, A sixth-order exponentially fitted method for the numerical solution of the radial Schrödinger equation, J. Comput. Phys. 91 (1990) 413–423.

    Article  Google Scholar 

  5. V. Fack, H. De Meyer and G. Vanden Berghe, Dynamic-group approach to the x 2 + öx 2 /(1 + gx 2), J. Math. Phys. 27 (1986) 1340–1343.

    Article  Google Scholar 

  6. V. Fack, H. De Meyer and G. Vanden Berghe, Some finite difference methods for computing eigenvalues and eigenvectors of special two-point boundary value problems, J. Comput. Appl. Math. 20 (1987) 211–217.

    Article  Google Scholar 

  7. V. Fack and G. Vanden Berghe, A finite difference approach for the calculation of perturbed oscillator energies, J. Phys. A: Math. Gen. 18 (1985) 3355–3363.

    Article  Google Scholar 

  8. V. Fack and G. Vanden Berghe, A programme for the calculation of energy eigenvalues and eigenstates of a Schrödinger equation, Comput. Phys. Commun. 39 (1986) 187–196.

    Article  CAS  Google Scholar 

  9. V. Fack and G. Vanden Berghe, (Extended) Numerov method for computing eigenvalues of specific Schrödinger equations, J. Phys. A: Math. Gen. 20 (1987) 4153–4160.

    Article  Google Scholar 

  10. E. Fehlberg, Low-order classical Runge–Kutta formulas with stepsize control and their application to some heat transfer problems, NASA Technical Report 315, USA (1969).

  11. G.P. Flessas, On the Schrödinger equation for the x 2 + λx 2 /(1 + gx 2) interaction, Phys. Lett. 83A (1981) 121–122.

    CAS  Google Scholar 

  12. G.P. Flessas, Definite integrals as solutions for the x 2 + λx 2 /(1 + gx 2) potential, J. Phys. A: Math. Gen. 15 (1982) L97–L101.

    Article  Google Scholar 

  13. P.J. van der Houwen and B.P. Sommeijer, Explicit Runge–Kutta(–Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal. 24 (1987) 595–617.

    Article  Google Scholar 

  14. R.S. Kaushal, Small g and large λ solution of the Schrödinger equation doe the interaction x 2 + λx 2 /(1 + gx 2), J. Phys. A: Math. Gen. 12 (1979) L253–L258.

    Article  Google Scholar 

  15. J.P. Killingbeck, Some applications of perturbation theory to numerical integration methods for the Schrödinger equation, Comput. Phys. Commun. 18 (1979) 211–214.

    Article  CAS  Google Scholar 

  16. H. Kobeissi and M. Kobeissi, On testing difference equations for the diatomic eigenvalue problem, J. Comput. Chem. 9 (1988) 844–850.

    Article  CAS  Google Scholar 

  17. C.S. Lai and H. Lin, On the Schrödinger equation for the interaction x 2 + λx 2 /(1 + gx 2), J. Phys. A: Math. Gen. 15 (1982) 1495–1502.

    Article  Google Scholar 

  18. L.D. Landau and F.M. Lifshitz, Quantum Mechanics (Pergamon Press, New York, 1965).

    Google Scholar 

  19. A. Mitra, On the interaction of the type x 2 + λx 2 /(1 + gx 2), J. Math. Phys. 19 (1978) 2018–2022.

    Article  Google Scholar 

  20. T.E. Simos, Numerical solution of ordinary differential equations with periodical solution, Doctoral dissertation, National Technical University of Athens (1990).

  21. T.E. Simos, Exponential fitted methods for the numerical integration of the Schrödinger equation, Comput. Phys. Commun. 71 (1992) 32–38.

    Article  CAS  Google Scholar 

  22. T.E. Simos, Runge–Kutta interpolants with minimal phase-lag, Comput. Math. Appl. 26 (1993) 43–49.

    Article  Google Scholar 

  23. T.E. Simos, Eighth order methods with minimal phase-lag for accurate computations for the elastic scattering phase-shift problem, J. Math. Chem. 21 (1997) 359–372.

    Article  CAS  Google Scholar 

  24. T.E. Simos and A.B. Sideridis, Accurate numerical approximations to initial value problems with periodical solutions, Computing 50 (1993) 87–92.

    Article  Google Scholar 

  25. V.S. Varma, On the x 2 + λx 2 /(1 + gx 2) interaction, J. Phys. A: Math. Gen. 14 (1981) L489–L492.

    Article  Google Scholar 

  26. R.R. Whitehead, A. Watt, G.P. Flessas and M.A. Nagarajan, Exact solutions of the Schrödinger equation (−d2/dx 2 + x 2 + λx 2/(1 +"> gx 2))y(x) = Ey(x), J. Phys. A: Math. Gen. 15 (1982) 1217–1226.

    Article  Google Scholar 

  27. T. Yano, K. Kitani, M. Otsuka, S. Tomiyoshi, S. Matsushima, T. Wada and Y. Ezawa, A high speed method for eigenvalue problems III. Case of unsymmetrical potentials in Milne's method, Comput. Phys. Commun. 81 (1994) 409–424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simos, T. Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations. Journal of Mathematical Chemistry 24, 23–37 (1998). https://doi.org/10.1023/A:1019102131621

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019102131621

Keywords

Navigation