Skip to main content
Log in

The catalytic removal of CO and NO over Co-Pt(Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of Co-Pt(Pd, Rh)/γ- Al2O3 catalysts were prepared by successive wetness impregnation. The catalytic activities for CO oxidation, NO decomposition and NO selective catalytic reduction (SCR) by C2H4 over the samples calcined at 500°C and reduced at 450°C were determined. The activities of the samples calcined at 750°C and reduced at 450°C for NO selective catalytic reduction (SCR) by C2H4 were also determined. All the samples were characterized by XRD, XPS, XANES, EXAFS, TPR, TPO and TPD techniques. The results of activity measurements show that the presence of noble metals greatly enhances the activity of Co/γ-Al2O3 for CO or C2H4 oxidation. For NO decomposition, the H2-reduced Co-Pt(Pd, Rh)/γ- Al2O3 catalysts exhibit very high activities during the initial period of catalytic reaction, but with the increase of reaction time, the activities decrease obviously because of the oxidation of surface cobalt phase. For NO selective reduction by C2H4, the reduced samples are oxidized more quickly by the excess oxygen in reaction gas. The oxidized samples possess very low activities for NO selective reduction. The results of XRD, XPS and EXAFS indicate that all the cobalt in Co-Pt(Pd, Rh)/γ-Al2O3 has been reduced to zero valence during reduction by H2 at 450°C, but in Co/γ-Al2O3 only a part of the cobalt has been reduced to zero valence, the rest exists as CoAl2O4-like spinel which is difficult to reduce. For the samples calcined at 750°C, the cobalt exists as CoAl2O4 which cannot be reduced by H2 at 450°C and possesses better activities for NO selective reduction. The results of XANES spectra show that the cobalt in Co/γ- Al2O3 has lower coordination symmetry than that in Co-Pt(Pd, Rh)/γ-Al2O3. This difference mainly results from the distorting tetrahedrally- coordinated Co2+ ions which have lower coordination symmetry than Co0 in the catalysts. The coordination number for the Co-Co shell from EXAFS has shown that the cobalt phase is highly dispersed on Co-Pt(Pd, Rh)/γ- Al2O3 catalysts. The TPR results indicate that the addition of noble metals to Co/γ- Al2O3 makes the TPR peaks shift to lower temperatures, which implies the spillover of hydrogen species from noble metals to cobalt oxides. The oxygen spillover from noble metals to cobalt is also inferred from the shift of TPO peaks to lower temperatures and the increased amount of desorbed oxygen from TPD. For CO oxidation, the Co0 is the main active phase. For NO decomposition and selective reduction, Co0 is also catalytically active, but it can be oxidized into Co3O4 by oxygen at high reaction temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Lawton and R.J. Gower, Plat. Met. Rev. 38 (1994) 160.

    CAS  Google Scholar 

  2. J.T. Kummer, J. Phys. Chem. 90 (1986) 4747.

    Article  CAS  Google Scholar 

  3. J.R. Gonzalez-Velasco, J. Entrena, J.A. Gonzalez-Marcos, J.I. Gutierre et al., Appl. Catal. B 3 (1994) 191.

    Article  Google Scholar 

  4. T.J. Truex, R.A. Searles and D.C. Sun, Plat. Met. Rev. 36 (1992) 2.

    CAS  Google Scholar 

  5. Y. Li, T.L. Slager and J.N. Armor, J. Catal. 150 (1994) 388.

    Article  CAS  Google Scholar 

  6. Y. Li and J.N. Armor, Appl. Catal. B 2 (1993) 239.

    Article  Google Scholar 

  7. X. Zhang, A.B. Walters and M.A. Vannice, J. Catal. 155 (1995) 290.

    Article  CAS  Google Scholar 

  8. X. Zhang, A.B. Walters and M.A. Vannice, J. Catal. 146 (1994) 568.

    Article  CAS  Google Scholar 

  9. X. Zhang, A.B. Walters and M.A. Vannice, Appl. Catal. B 4 (1994) 237.

    Article  Google Scholar 

  10. E. Iglesia, S.L. Soled and R.A. Fiato, J. Catal. 137 (1992) 212.

    Article  CAS  Google Scholar 

  11. M. Meng, P.Y. Lin and S.M. Yu, Chinese J. Chem. Phys. 8 (1995) 66.

    CAS  Google Scholar 

  12. R.J. Voorhoeve, D.W. Johnson, J. Remeika and P.K. Gallagher, Sci. 195 (1977) 827.

    CAS  Google Scholar 

  13. J.M. Tascon, L.G. Tejuca and C.H. Rochester, J. Catal. 95 (1985) 558.

    Article  CAS  Google Scholar 

  14. H. Hamada, Y. Kintaichi, M. Sasaki and T. Ito, Appl. Catal. 75 (1991) L1.

    Google Scholar 

  15. M. Shelef, K. Otto and H. Gandh, Atmos. Environ. 3 (1969) 107.

    Article  CAS  Google Scholar 

  16. Y. Teraoka, H. Fukuda and S. Kagawa, Chem. Lett. (1990) 1, 1069.

    Google Scholar 

  17. P.Y. Lin, M. Skoglundh, L. Lowendahl, J.E. Otterstedt et al., Appl. Catal. B 6 (1995) 237.

    Article  Google Scholar 

  18. D. Schanke, S. Vada, E.A. Blekkan, A.M. Hilmen, A. Hoff and A. Holmen, J. Catal. 156 (1995) 85.

    Article  CAS  Google Scholar 

  19. L. Guczi, T. Hoffer, Z. Zsoldos, S. Zyade, G. Maire and F. Garin, J. Phys. Chem. 95 (1991) 802.

    Article  CAS  Google Scholar 

  20. V.M. Belousov, J. Stoch, I.V. Batcherikova, E.V. Rozhkova and L.V. Lyashenko, Appl. Surf. Sci. 35 (1988) 481.

    Article  Google Scholar 

  21. A.S. Sass, V.A. Shvet, G.A. Saveleva and V.B. Kazanskii, Kinet. Katal. 26 (1985) 1149.

    CAS  Google Scholar 

  22. H.F.J. van't Blik and R. Prins, J. Catal. 97 (1986) 188.

    Article  Google Scholar 

  23. Z. Zsoldos, T. Hoffer and L. Guczi, J. Phys. Chem. 95 (1991) 795.

    Article  Google Scholar 

  24. Z. Zsoldos and L. Guczi, J. Phys. Chem. 96 (1992) 9393.

    Article  CAS  Google Scholar 

  25. S. Zyade, F. Garin and G. Maire, New J. Chem. 11 (1987) 429.

    CAS  Google Scholar 

  26. U. Bardi, B.C. Beard and P.N. Ross, J. Catal. 124 (1990) 22.

    Article  CAS  Google Scholar 

  27. U. Bardi, A. Atrei, G. Rovida and M. Torrini, Surf. Sci. Lett. 282 (1993) L365.

    Article  CAS  Google Scholar 

  28. P. Arnoldy and J.A. Moulijn, J. Catal. 93 (1985) 38.

    Article  CAS  Google Scholar 

  29. W.J. Wang and Y.W. Chen, Appl. Catal. 7 (1991) 223.

    Google Scholar 

  30. K.S. Chung and F.E. Massoth, J. Catal. 64 (1980) 320.

    Article  CAS  Google Scholar 

  31. M. Meng, P.Y. Lin and S.M. Yu, Chinese J. Chem. Phys. 8 (1995) 176.

    CAS  Google Scholar 

  32. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder and G.E. Muilenberg, Handbook of X-ray Photoelectron Spetroscopy (Perkin-Elmer Corp. Physical Electronics Division, USA, 1979).

    Google Scholar 

  33. Y. Okamoto, T. Imanaka and S. Teranishi, J. Catal. 65 (1980) 448.

    Article  CAS  Google Scholar 

  34. Y. Okamoto, T. Adachi, K. Nagata, M. Odawara and T. Imanaka, Appl. Catal. 73 (1991) 249.

    Article  CAS  Google Scholar 

  35. R.B. Greegor, F.W. Lytle, R.L. Chin and D.M. Hercules, J. Phys. Chem. 85 (1981) 1232.

    Article  CAS  Google Scholar 

  36. H.W. Xiang, T.D. Hu, B. Zhong, S.Y. Peng, Y.N. Xie, D.X. Huang and X.N. Chen, Chinese J. Chem. Phys. 8 (1995) 75.

    CAS  Google Scholar 

  37. G. Sankar, S. Vasudevan and C.N.R. Rao, J. Phys. Chem. 91 (1987) 2011.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, M., Lin, P. & Fu, Y. The catalytic removal of CO and NO over Co-Pt(Pd, Rh)/γ-Al2O3 catalysts and their structural characterizations. Catalysis Letters 48, 213–222 (1997). https://doi.org/10.1023/A:1019099625781

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019099625781

Keywords

Navigation