Skip to main content
Log in

An effective heterogeneous WO3/TiO2–SiO2 catalyst for selective oxidation of cyclopentene to glutaraldehyde by H2O2

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

TiO2–SiO2 mixed oxide with large pore size was synthesized by the xerogel method and it was then used to prepare the WO3/TiO2–SiO2 catalyst by an incipient wetness method. The as‐prepared WO3/TiO2–SiO2 sample was employed as the first heterogeneous catalyst in the liquid‐phase cyclopentene oxidation by aqueous H2O2, which exhibited higher selectivity (about 75%) to glutaraldehyde (GA) and, in turn, higher GA yield than the WO3/SiO2 heterogeneous catalyst and even the tungstic acid homogeneous catalyst under the same reaction conditions. The amorphous WO3 phase was identified as the active sites and the loss of the active sites was proved to be not important. The lifetime of the catalyst was determined and its regeneration method was proposed. The effects of various factors on the catalytic behaviors, such as the WO3 loading, the calcination temperature, the surface acidity and the reaction media, were investigated and discussed based on various characterizations including BET, XRD, XPS, FTIR, EXAFS and Raman spectra etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Morikawa, K. Takahashi, J. Mogi and S. Kurita, Bull. Chem. Soc. Jpn. 55 (1982) 2254.

    Article  CAS  Google Scholar 

  2. C. Martin, G. Solana, V. Rives, G. Marci, L. Palmisano and A. Sclafani, Catal. Lett. 49 (1997) 235.

    Article  CAS  Google Scholar 

  3. H. Kamata, K. Takahashi and C.U.I. Odenbrand, Catal. Lett. 53 (1998) 65.

    Article  CAS  Google Scholar 

  4. Z. Zhang, J. Suo, X. Zhang and S. Li, J. Chem. Soc. Chem. Commun. (1998) 241.

  5. Y. Ishii, K. Yamawaki, T. Ura, H. Yoshida and M. Ogawa, J. Org. Chem. 53 (1988) 3587.

    Article  CAS  Google Scholar 

  6. Oguchi, T. Ura, Y. Ishii and M. Ogawa, Chem. Lett. (1989) 857.

  7. G.M. Karagezyan et al., USSR SU 878760 (1981).

  8. Daicel Chemical Industries Ltd. Co., JP 59108734 (1984).

  9. S.P. Gorman, E.M. Scott and A.D. Russell, J. Appl. Bacteriol. 48 (1980) 161.

    CAS  Google Scholar 

  10. W.J. Wang, M.H. Qiao, H.X. Li and J.-F. Deng, Appl. Catal. A 166 (1998) 243.

    Article  Google Scholar 

  11. W.J. Wang, M.H. Qiao, H.X. Li, W.L. Dai and J.-F. Deng, Appl. Catal. A 168 (1998) 151.

    Article  CAS  Google Scholar 

  12. H. Furakawa, T. Nakamura, H. Inagaki, E. Nishikawa, C. Imai and M. Misono, Chem. Lett. (1988) 877.

  13. J.-F. Deng, X.H. Xu, H.Y. Chen and A.R. Jiang, Tetrahedron 48 (1992) 3503.

    Article  CAS  Google Scholar 

  14. K.-Y. Lee, K. Itoh, M. Hashimoto, N. Mizuno and M. Misono, Stud. Surf. Sci. Catal. 82 (1994) 583.

    CAS  Google Scholar 

  15. R. Jin, X. Xia, D. Xue and J.-F. Deng, Chem. Lett. (1999) 371.

  16. B.E. Yoldas, J. Non-Cryst. Solids 38 (1980) 81.

    Article  Google Scholar 

  17. M. Aizawa, Y. Nosaka and N. Fujii, J. Non-Cryst. Solids 128 (1991) 77.

    Article  CAS  Google Scholar 

  18. D.C.M. Dutoit, M. Schneider and A. Baiker, J. Catal. 153 (1995) 165.

    Article  CAS  Google Scholar 

  19. A. Thangaraj, R. Kumar, S.P. Mirajkar and P. Ratnasamy, J. Catal. 130 (1991) 1.

    Article  CAS  Google Scholar 

  20. K. Arata, Adv. Catal. 37 (1989) 165.

    Google Scholar 

  21. W. Ji, J. Hu and Y. Chen, Catal. Lett. 53 (1998) 15.

    Article  CAS  Google Scholar 

  22. N. Vaidyaanathan, M. Houaua and D.M. Hercules, Catal. Lett. 43 (1997) 209.

    Article  Google Scholar 

  23. I.E. Wachs, F.D. Hardcastle and S.S. Chan, Spectroscopy 1 (1986) 30.

    CAS  Google Scholar 

  24. M.A. Vuurman and I.E. Wachs, J. Phys. Chem. 95 (1991) 9928.

    Article  CAS  Google Scholar 

  25. E. Salje and H.M. Rietveld, Acta Crystallogr. A 31 (1975) 356.

    Article  Google Scholar 

  26. F. Hilbrig, H.E. Gobel, H. Knözinger, H. Schmelz and B. Lengeler, J. Phys. Chem. 95 (1991) 6973.

    Article  CAS  Google Scholar 

  27. I.E. Wachs, D.S. Kim and M. Ostromecki, J. Mol. Catal. A 106 (1996) 93.

    Article  Google Scholar 

  28. A. Corma, M.A. Camblor, P. Esteve, A. Martinez and J. Perez-Pariente, J. Catal. 145 (1994) 151.

    Article  CAS  Google Scholar 

  29. R. Hutter, T. Mallat and A. Baiker, J. Catal. 153 (1995) 177.

    Article  CAS  Google Scholar 

  30. R.A. Sheldon, M. Wallau, I.W.C.E. Arends and U. Schuchardt, Acc. Chem. Res. 31 (1998) 485.

    Article  CAS  Google Scholar 

  31. D.B. Dadyburjor, S.S. Jewur and E. Ruckenstein, Catal. Rev. Sci. Eng. 19 (1979) 293.

    CAS  Google Scholar 

  32. J. Haber, in: New Developments in Selective Oxidation by Heterogeneous Catalysis, Vol. 72, ed. B. Delmon (Elsevier, Amsterdam, 1992) p. 279.

    Google Scholar 

  33. H.H. Kung, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 171.

    Article  CAS  Google Scholar 

  34. G. Centi and F. Trifirò, Appl. Catal. 12 (1984) 1.

    Article  CAS  Google Scholar 

  35. À. Molnár, G.V. Smith and M. Bartók, Adv. Catal. 36 (1989) 329.

    Article  Google Scholar 

  36. J.-F. Deng, J. Yang and S. Sheng, J. Catal. 150 (1994) 434.

    Article  CAS  Google Scholar 

  37. V. Hulea, E. Dumitriu, F. Patcas, R. Ropot, P. Graffin and P. Moreau, Appl. Catal. A 170 (1998) 169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, R., Xia, X., Dai, W. et al. An effective heterogeneous WO3/TiO2–SiO2 catalyst for selective oxidation of cyclopentene to glutaraldehyde by H2O2 . Catalysis Letters 62, 201–207 (1999). https://doi.org/10.1023/A:1019094905328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019094905328

Navigation