Skip to main content
Log in

Characterization of strong solid bases by test reactions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The isomerization of 2,3-dimethylbut-1-ene and the decomposition of 2-methyl-3-butyn-2-ol were carried out over a number of solid base catalysts. Rubidium amide supported on alumina was the most active for the isomerization, which proceeds almost to the equilibrium in 10 min at 201 K. The isomerization is a very useful test reaction for determining the relative activities of very strong solid bases. However, weak solid bases such as K+-exchanged Y zeolite are totally inactive for the isomerization. The decomposition of 2-methyl-3-butyn-2-ol is a suitable reaction to discriminate acidic and basic catalysts. It can be also used for estimating the basic property of weak bases such as lithium hydroxide supported on alumina. However, caution is necessary for strongly basic catalysts because of strong adsorption of the products, acetylene and acetone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Baba, H. Handa and Y. Ono, J. Chem. Soc. Faraday Trans. 90 (1994) 187.

    Google Scholar 

  2. Y. Ono and T. Baba, Catal. Today 38 (1997) 321.

    Google Scholar 

  3. H. Handa, T. Baba, H. Yamada, T. Takahashi and Y. Ono, Catal. Lett. 44 (1997) 119.

    Google Scholar 

  4. T. Baba, A. Kato, H. Handa and Y. Ono, Catal. Lett. 47 (1997) 77.

    Google Scholar 

  5. T. Baba, H. Handa and Y. Ono, Catal. Lett. 50 (1998) 83.

    Google Scholar 

  6. T. Baba, A. Kato, H. Takahashi, F. Toriyama, H. Handa, Y. Ono and H. Sugisawa, J. Catal. 176 (1998) 488.

    Google Scholar 

  7. T. Ando, Stud. Surf. Sci. Catal. 90 (1994), and references therein.

  8. J.H. Clerk, D.E. Cork and M.S. Robertson, Chem. Lett. (1983) 1145.

  9. D.E. Bergbreider and J.J. Lalonde, J. Org. Chem. 52 (1957) 1601.

    Google Scholar 

  10. H. Tsuji, H. Kabashima, H. Kita and H. Hattori, Reac. Kinet. Catal. Lett. 56 (1995) 363.

    Google Scholar 

  11. H. Handa, T. Baba, H. Sugisawa and Y. Ono, J. Mol. Catal., in press.

  12. T. Yamaguchi, J.-H. Zhu, Y. Wang, M. Komatu and M. Ookawa, Chem. Lett. (1997) 989.

  13. Y. Fu, T. Baba and Y. Ono, Appl. Catal. A 166 (1998) 425.

    Google Scholar 

  14. Y. Fu, T. Baba and Y. Ono, Appl. Catal. A 176 (1999) 203.

    Google Scholar 

  15. Y. Fu, T. Baba and Y. Ono, Appl. Catal. A 178 (1999) 219.

    Google Scholar 

  16. J. Take, N. Kikuchi and Y. Yoneda, J. Catal. 21 (1974) 164.

    Google Scholar 

  17. K. Tanabe, M. Misono, Y. Ono and H. Hattori, New Solid Acids and Bases, Stud. Surf. Sci. Catal., Vol. 51 (Kodansha/Elsevier, Tokyo/Amsterdam, 1989) p. 26.

    Google Scholar 

  18. H. Lauron-Pernot, F. Luck and J.M. Popa, Appl. Catal. 78 (1991) 213.

    Google Scholar 

  19. M. Huang and S. Kaliaguine, Catal. Lett. 18 (1993) 373.

    Google Scholar 

  20. T. Baba, R. Koide and Y. Ono, J. Chem. Soc. Chem. Commun. (1991) 691.

  21. T. Baba, G.-J. Kim and Y. Ono, J. Chem. Soc. Faraday Trans. 88 (1992) 891.

    Google Scholar 

  22. T. Baba, S. Hikita, R. Koide, T. Hanada, T. Tanaka and Y. Ono, J. Chem. Soc. Faraday Trans. 89 (1993) 3177.

    Google Scholar 

  23. T. Baba, S. Hikita, T. Hanada, T. Tanaka, S. Yoshida and Y. Ono, J. Mol. Catal. A 98 (1995) 49.

    Google Scholar 

  24. T. Baba, S. Hikita, H. Handa and Y. Ono, Res. Chem. Intermed. 24 (1998) 495.

    Google Scholar 

  25. W.T. Reiche, J. Catal. 94 (1985) 547.

    Google Scholar 

  26. J.J. Lemserton, M. Trouzeydio and M. Guisnet, Appl. Catal. 54 (1989) 91.

    Google Scholar 

  27. T. Nakatsuka, H. Kawasaki, S. Yamashita and S. Kohjiya, Bull. Chem. Soc. Jpn. 52 (1979) 2449.

    Google Scholar 

  28. E. Suzuki and Y. Ono, Bull. Chem. Soc. Jpn. 61 (1988) 1008.

    Google Scholar 

  29. A. Corma, V. Formes, R.M. Martin-Aranda and E. Rey, J. Catal. 134 (1992) 58.

    Google Scholar 

  30. A. Corma and R.M. Martin-Aranda, Appl. Catal. A 105 (1993) 271.

    Google Scholar 

  31. Y. Ono, Stud. Surf. Sci. Catal. 5 (1980) 19.

    Google Scholar 

  32. K. Hatada, Y. Takeyama and Y. Ono, Bull. Chem. Soc. Jpn. 51 (1976) 448.

    Google Scholar 

  33. Z.-H. Fu and Y. Ono, J. Catal. 145 (1994) 166.

    Google Scholar 

  34. A. Corma, V. Fornes, R.M. Martin-Aranda, H. Garcia and J. Primo, Appl. Catal. 39 (1990) 237.

    Google Scholar 

  35. F. Yagi, N. Kanuka, H. Tsuji, S. Nakata, H. Kita and H. Hattori, Micropor. Mater. 9 (1997) 229.

    Google Scholar 

  36. F. Yagi, H. Tsuji and H. Hattori, Micropor. Mater. 9 (1997) 237.

    Google Scholar 

  37. F. Yagi and H. Hattori, Micropor. Mater. 9 (1997) 247.

    Google Scholar 

  38. P.E. Hathaway and M.E. Davis, J. Catal. 116 (1989) 263, 279.

    Google Scholar 

  39. P.E. Hathaway and M.E. Davis, J. Catal. 119 (1989) 497.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handa, H., Fu, Y., Baba, T. et al. Characterization of strong solid bases by test reactions. Catalysis Letters 59, 195–200 (1999). https://doi.org/10.1023/A:1019093126342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019093126342

Navigation