Skip to main content
Log in

XRD studies of evolution of catalytic nickel nanoparticles during synthesis of filamentous carbon from methane

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The XDR technique was used for studying a series of high‐loaded (90%) nickel catalysts with silica as a textural promoter. These were catalysts for direct cracking of methane at 550°C. A relation between the initial average size of active catalyst particles, carbon yield and average methane conversion was demonstrated. Genesis of these catalysts was studied including oxide precursors, reduced catalysts prior to the reaction, as well as catalysts upon their contacting the reaction medium for various periods of time from 15 min to 2 h. The active catalyst particles were shown to merge or disperse at the outset of the reaction depending on their initial size. Anyway, close average sizes ranging from 30 to 40 nm were observed by the end of the first reaction hour for all the catalytic systems providing the carbon yield of 300–385 g/g Ni. The catalytic system was shown to self‐organize in the course of direct methane cracking, i.e., the catalyst particles transform in response to the reaction conditions. If the size of nickel particles cannot vary, these catalysts are inefficient for the given process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.T.K. Baker, Carbon 27 (1989) 315.

    Article  CAS  Google Scholar 

  2. N.M. Rodriguez, J. Mater. Res. 8 (1993) 3233.

    CAS  Google Scholar 

  3. N.M. Rodriguez, A. Chambers and R.T.K. Baker, Langmuir 11 (1995) 3862.

    Article  CAS  Google Scholar 

  4. G.G. Kuvshinov, Yu.I. Mogilnykh, D.G. Kuvshinov, D.Yu. Ermakov, M.A. Ermakova, A.N. Salanov and N.A. Rudina, in: Symposium on Microscopic Studies of Coal and Carbon, 22–27 August 1998, Prepr. Am. Chem. Soc. Div. Fuel Chem., Vol. 43 (1998) pp. 946-950.

    CAS  Google Scholar 

  5. G.G. Kuvshinov, Yu.I. Mogilnykh, D.G. Kuvshinov, D.Yu. Ermakov, M.A. Ermakova, A.N. Salanov and N.A. Rudina, Carbon 37 (1999) 1239.

    Article  CAS  Google Scholar 

  6. L.B. Avdeeva, O.V. Goncharova, D.I. Kochubey, B.N. Novgorodov, L.M. Plyasova and Sh.K. Shaikhutdinov, Appl. Catal. A 141 (1996) 117.

    Article  CAS  Google Scholar 

  7. A. Sacco, Jr., P. Thacker, T.N. Chang and A.T.S. Chiang, J. Catal. 85 (1984) 224.

    Article  CAS  Google Scholar 

  8. E.G.M. Kuijpers, R.B. Tjepkema and J.W. Geus, J. Mol. Catal. 25 (1984) 241.

    Article  CAS  Google Scholar 

  9. C. Park and R.T.K. Baker, J. Catal. 179 (1998) 361.

    Article  CAS  Google Scholar 

  10. G.G. Kuvshinov, Yu.I. Mogilnikh, D.G. Kuvshinov, V.I. Zaikovskii and L.B. Avdeeva, Carbon 36 (1998) 87.

    Article  CAS  Google Scholar 

  11. O.P. Krivoruchko and V.I. Zaikovskii, Kinet. Katal. 39 (1998) 607.

    Google Scholar 

  12. R.T.K. Baker, M.A. Barber, P.S. Harris, F.S. Feates and R.J. Waite, J. Catal. 26 (1972) 51.

    Article  CAS  Google Scholar 

  13. J.R. Rostrup-Nielsen and D.L. Trimm, J. Catal. 48 (1977) 155.

    Article  CAS  Google Scholar 

  14. R.A. Buyanov, V.V. Chesnokov, A.D. Afanasiev and V.S. Babenko, Kinet. Katal. 18 (1977) 1021.

    CAS  Google Scholar 

  15. M.P. Manning, J.E. Garmirian and R.C. Reid, Ind. Eng. Chem. Process Des. Dev. 21 (1982) 404.

    Article  CAS  Google Scholar 

  16. J. Alstrup, J. Catal. 109 (1988) 241.

    Article  CAS  Google Scholar 

  17. J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft and P.D. Battle, Catal. Lett. 22 (1993) 299.

    Article  CAS  Google Scholar 

  18. O.V. Goncharova, L.B. Avdeeva, V.B. Fenelonov, L.M. Plyasova, V.V. Malakhov, G.S. Litvac and A.A. Vlasov, Kinet. Katal. 36 (1995) 293.

    Google Scholar 

  19. M.A. Ermakova, D.Yu. Ermakov, G.G. Kuvshinov and L.M. Plyasova, Kinet. Katal. 5 (1998) 791.

    Google Scholar 

  20. M.A. Ermakova, D.Yu. Ermakov, G.G. Kuvshinov and L.M. Plyasova, J. Catal., in press.

  21. A. Guinier, Theorie et Technique de la Radiocristallographie (Dunod, Paris, 1956).

    Google Scholar 

  22. S. Sakka and K. Kamiya, J. Non Cryst. Solids 48 (1982) 31.

    Article  CAS  Google Scholar 

  23. C.J. Wright, C.G. Windsor and P.C. Puxley, J. Catal. 78 (1982) 257.

    Article  CAS  Google Scholar 

  24. W.S. Borghard and M. Boudart, J. Catal. 80 (1983) 194.

    Article  CAS  Google Scholar 

  25. A.M. Hindeleh and R. Hosemann, J. Phys. Chem. Solid State Phys. 21 (1988) 4155.

    Article  Google Scholar 

  26. L.M. Plyasova, Kinet. Katal. 33 (1992) 664.

    CAS  Google Scholar 

  27. E. Ruckenstein and B. Pulvermacher, J. Catal. 29 (1973) 224.

    Article  CAS  Google Scholar 

  28. P. Wynblatt and N.A. Glostein, Prog. Solid State Chem. 9 (1974) 21.

    Article  Google Scholar 

  29. R.M.J. Fiedorow and S.E. Wanke, J. Catal. 43 (1976) 34.

    Article  CAS  Google Scholar 

  30. R.M.J. Fiedorow, B.S. Chahar and S.E. Wanke, J. Catal. 51 (1978) 193.

    Article  CAS  Google Scholar 

  31. V.N. Parmon, Catal. Lett. 42 (1996) 195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakova, M., Ermakov, D., Plyasova, L. et al. XRD studies of evolution of catalytic nickel nanoparticles during synthesis of filamentous carbon from methane. Catalysis Letters 62, 93–97 (1999). https://doi.org/10.1023/A:1019079929435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019079929435

Navigation