Skip to main content
Log in

The reduction of NO with H2 over Ru/MgO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Ruthenium supported on magnesia was found to be a highly active and selective catalyst for the reduction of NO to N2 with H2. The adsorption of NO on Ru/MgO was studied at room temperature by applying frontal chromatography with a mixture of 2610 ppm NO in He. Subsequently, temperature‐programmed desorption (TPD) and temperature‐programmed surface reaction (TPSR) experiments in H2 were performed. The adsorption of NO was observed to occur partly dissociatively as indicated by the formation of molecular nitrogen. The TPD spectrum exhibited a minor NO peak at 340 K indicating additional molecular adsorption of NO during the exposure to NO at room temperature, and two N2 peaks at 480 K and 625 K, respectively. The latter data are in good agreement with previous results with Ru(0001) single‐crystal samples, where the interaction with NH3 was found to lead to two N2 thermal desorption states with a maximum coverage of atomic nitrogen of about 0.38. Heating up the catalyst after saturation with NO at room temperature in a H2 atmosphere revealed the self‐accelerated formation of NH3 after partial desorption of N2, whereby sites for reaction with H2 become available. As a consequence, the observed high selectivity towards N2 under steady‐state reduction conditions is ascribed to the presence of a saturated N+O coadsorbate layer resulting in an enhanced rate of N2 desorption from this layer and a very low steady‐state coverage of atomic hydrogen. The formation of H2O by reduction of adsorbed atomic oxygen is the slow step of the overall reaction which determines the minimum temperature required for full conversion of NO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shelef, Catal. Rev. Sci. Eng. 11 (1975) 1.

    CAS  Google Scholar 

  2. H. Bosch and F. Janssen, Catal. Today 2 (1988) 369.

    Article  CAS  Google Scholar 

  3. F.G. Dwyer, Catal. Rev. 6 (1972) 261.

    CAS  Google Scholar 

  4. W.A. Mannion, K. Aykan, J.G. Cohn, C.E. Thompson and J.J. Mooney, in: Catalysis for the Control of Automotive Pollutants, Advances in Chemistry Series, ed. J.E. McEvoy (ACS, Washington, DC, 1975) p. 1.

    Google Scholar 

  5. R.L. Klimisch and J.M. Komarmy, in: The Catalytic Chemistry of Nitrogen Oxides, eds. R.L. Klimisch and J.G. Larson (Plenum Press, New York, 1975) p. 305.

    Google Scholar 

  6. K. Lu and B.J. Tatarchuk, J. Catal. 106 (1987) 166.

    Article  CAS  Google Scholar 

  7. S. Murata and K.-I. Aika, Appl. Catal. A 82 (1992) 1.

    Article  CAS  Google Scholar 

  8. S. Murata and K.-I. Aika, J. Catal. 136 (1992) 110.

    Article  CAS  Google Scholar 

  9. S. Murata and K.-I. Aika, J. Catal. 136 (1992) 118.

    Article  CAS  Google Scholar 

  10. K. Aika, T. Takano and S. Murata, J. Catal. 136 (1992) 126.

    Article  CAS  Google Scholar 

  11. F. Rosowski, A. Hornung, O. Hinrichsen, D. Herein, M. Muhler and G. Ertl, Appl. Catal. A 151 (1997) 443.

    Article  CAS  Google Scholar 

  12. O. Hinrichsen, F. Rosowski, A. Hornung, M. Muhler and G. Ertl, J. Catal. 165 (1997) 33.

    Article  CAS  Google Scholar 

  13. M. Shelef and H.S. Gandhi, Ind. Eng. Chem. Prod. Res. Dev. 11 (1972) 393.

    Article  CAS  Google Scholar 

  14. K. Otto and M. Shelef, Zeitschr. Phys. Chem. Neue Folge 85 (1973) 308.

    CAS  Google Scholar 

  15. T.P. Kobylinski and B.W. Taylor, J. Catal. 33 (1974) 376.

    Article  CAS  Google Scholar 

  16. R.L. Klimisch and K.C. Taylor, Ind. Eng. Chem. Prod. Res. Dev. 14(1) (1975) 26.

    Article  CAS  Google Scholar 

  17. S.L. Matson and P. Harriot, Ind. Eng. Chem. Prod. Res. Dev. 17 (1978) 322.

    Article  CAS  Google Scholar 

  18. T. Fink, J.P. Dath, R. Imbihl and G. Ertl, J. Chem. Phys. 95 (1991) 2109.

    Article  CAS  Google Scholar 

  19. M. Uchida and A.T. Bell, J. Catal. 60 (1979) 204.

    Article  CAS  Google Scholar 

  20. H. Dietrich, K. Jacobi and G. Ertl, J. Chem. Phys. 105 (1996) 8944.

    Article  CAS  Google Scholar 

  21. S. Schwegmann, A.P. Seitsonen, H. Dietrich, H. Bludau, H. Over, K. Jacobi and G. Ertl, Chem. Phys. Lett. 264 (1997) 680.

    Article  CAS  Google Scholar 

  22. C. Stampfl, S. Schwegmann, H. Over, M. Scheffler and G. Ertl, Phys. Rev. Lett. 77 (1996) 3371.

    Article  CAS  Google Scholar 

  23. A. B¨ottcher, H. Niehus, S. Schwegmann, H. Over and G. Ertl, J. Phys. Chem., in press.

  24. C. Nagl, R. Schuster and G. Ertl, in preparation.

  25. T. Zambelli, J. Wintterlin, J. Trost and G. Ertl, Science 273 (1996) 1688.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornung, A., Muhler, M. & Ertl, G. The reduction of NO with H2 over Ru/MgO. Catalysis Letters 53, 77–81 (1998). https://doi.org/10.1023/A:1019072915187

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019072915187

Navigation