Skip to main content

Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst

Abstract

The mechanism of the reverse water–gas shift reaction over a Cu catalyst was studied by CO2 hydrogenation, temperature-programmed reduction of the Cu catalyst and pulse reaction with QMS monitoring. In comparison with the reaction of CO2 alone, hydrogen can significantly promote the CO formation in the RWGS reaction. The formate derived from association of H2 and CO2 is proposed to be the key intermediate for CO production. Formate dissociation mechanism is the major reaction route for CO production. Cu(I) species were formed from the oxidation of Cu0 associated with CO2 dissociation.

This is a preview of subscription content, access via your institution.

References

  1. T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.S. Nam, K.W. Jun, M.J. Choi, G. Kishan and K.W. Lee, Appl. Catal. 186 (1999) 201.

    Article  CAS  Google Scholar 

  2. S.S. Nam, H. Kim, G. Kishan, M.J. Choi and K.W. Lee, Appl. Catal. 179 (1999) 155.

    Article  CAS  Google Scholar 

  3. K.H. Ernst, C.T. Campbell and G. Moretti, J. Catal. 134 (1992) 66.

    Article  CAS  Google Scholar 

  4. S.I. Fujita, M. Usui and N. Takezawa, J. Catal. 134 (1992) 220.

    Article  CAS  Google Scholar 

  5. M.J.L. Ginés, A.J. Marchi and C.R. Apesteguía, Appl. Catal. 154 (1997) 155.

    Article  Google Scholar 

  6. M.S. Spencer, Catal. Lett. 32 (1995) 9.

    Article  CAS  Google Scholar 

  7. J. Nakamura, J.M. Campbell and C.T. Campbell, J. Chem. Soc. Faraday Trans. 86 (1990) 2725.

    Article  Google Scholar 

  8. E. Iglesia and M. Boudart, J. Catal. 81 (1983) 214.

    Article  CAS  Google Scholar 

  9. J. Yoshihara, S.C. Parker, A. Schafer and C.T. Campbell, Catal. Lett. 31 (1995) 313.

    Article  CAS  Google Scholar 

  10. T. Shido and Y. Iwasawa, J. Catal. 140 (1993) 575.

    Article  CAS  Google Scholar 

  11. C.T. Campbell and K.A. Daube, J. Catal. 104 (1987) 109.

    Article  CAS  Google Scholar 

  12. Q. Sun, C.W. Liu, W. Pan, Q.M. Zhu and J.F. Deng, Appl. Catal. 171 (1998) 301.

    Article  CAS  Google Scholar 

  13. T. Salmi and R. Hakkarainen, Appl. Catal. 49 (1989) 285.

    Article  CAS  Google Scholar 

  14. D.C. Grenoble, M.M. Estadt and D.F. Ollis, J. Catal. 67 (1981) 90.

    Article  CAS  Google Scholar 

  15. C.J.G. van der Grift, A.F.H. Wielers, B.P.J. Joghi, J.V. Beijnum, M.E. Boer, M.V. Helder and J.W. Geus, J. Catal. 131 (1991) 178.

    Article  CAS  Google Scholar 

  16. D.B. Clarke and A.T. Bell, J. Catal. 154 (1995) 314.

    Article  CAS  Google Scholar 

  17. J. Yoshihara and C.T. Campbell, J. Catal. 161 (1996) 776.

    Article  CAS  Google Scholar 

  18. I.A. Fisher, H.C. Woo and A.T. Bell, Catal. Lett. 44 (1997) 11.

    Article  CAS  Google Scholar 

  19. J. Nakamura, I. Nakamura, T. Uchijima, Y. Kanai, T. Watanabe, M. Saito and T. Fujitani, Catal. Lett. 31 (1995) 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, CS., Cheng, WH. & Lin, SS. Mechanism of CO formation in reverse water–gas shift reaction over Cu/Al2O3 catalyst. Catalysis Letters 68, 45–48 (2000). https://doi.org/10.1023/A:1019071117449

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019071117449

  • reverse water–gas shift
  • temperature-programmed reduction
  • copper catalysts
  • formate mechanism