Skip to main content
Log in

Mechanistic studies of CO2/CH4 reforming over Ni–La2O2/5A

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The mechanism of CO2/CH4 reforming over Ni–La2O3/5A has been studied. The results of the CO2‐pulsing experiments indicated that the amount of CO2 converted was roughly proportional to the amount of H present on the catalyst, implying that CO2 activation could be H‐assisted. Pulsing CH4 onto a H2‐reduced sample and a similar sample pretreated with CO2, we found that CH4 conversion was higher in the latter case. Hence, the idea of oxygen‐assisted CH4 dissociation is plausible. The fact that the amount of CO produced in 10 pulses of CO2/CH4 was larger than that produced in 5 pulses of CO2 followed by 5 pulses of CH4, indicated that CO2 and CH4 could activate each other synergistically. In the chemical trapping experiments, following the introduction of CD3I onto a Ni–La2O3/5A sample pretreated with CH4/CO2, we observed CD3COOH, CD3CHO, and CD3OCD3. In the in situ DRIFT experiments, IR bands attributable to formate and formyl were observed under working conditions. These results indicate that formate and formyl are intermediates for syngas generation in CO2/CH4 reforming, and active O is generated in the breaking of a C–O bond. Based on these results, we suggest that during CO2/CH4 reforming, CO2 activation is H‐promoted and surface O species generated in CO2 dissociation reacts with CHx to give CO. A reaction scheme has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Gadalla and B. Bower, Chem. Eng. Sci. 43 (1988) 3049.

    Article  CAS  Google Scholar 

  2. J.H. Edwards, K.T. Do, A.H. Maitra, S. Schuck and W. Stein, Sol. Eng. 1 (1995) 389.

    Google Scholar 

  3. J.D. Fish and D.C. Hawn, J. Sol. Energy Eng. 109 (1987) 215.

    Article  CAS  Google Scholar 

  4. B. Delmon, Appl. Catal. B 1 (1992) 139.

    Article  Google Scholar 

  5. N.R. Udengaard, J.H.B. Hansen and D.C. Hanson, Oil Gas J. 90 (1992) 62.

    CAS  Google Scholar 

  6. Z. Zhang and X.E. Verkyios, J. Chem. Soc. Chem. Commun. (1995) 71.

  7. Z. Zhang and X.E. Verkyios, Catal. Today 21 (1994) 589.

    Article  CAS  Google Scholar 

  8. Y.H. Hu and E. Ruckenstein, Catal. Lett. 57 (1999) 167; 36 (1996) 145.

    Article  CAS  Google Scholar 

  9. H.Y. Wang and C.T. Au, Catal. Lett. 38 (1996) 77.

    Article  CAS  Google Scholar 

  10. Z. Zhang and X.E. Verykios, Catal. Lett. 38 (1996) 175.

    Article  CAS  Google Scholar 

  11. T. Osaki, T. Horiuchi, K. Suzuki and T. Mori, J. Chem. Soc. Faraday Trans. 92 (1996) 1627.

    Article  CAS  Google Scholar 

  12. M.C.J. Bradford and M.A. Vannice, J. Catal. 173 (1998) 157.

    Article  CAS  Google Scholar 

  13. E. Ruckenstein and Y.H. Hu, Catal. Lett. 51 (1998) 183; Appl. Catal. A 154 (1997) 185.

    Article  CAS  Google Scholar 

  14. F. Solymosi, Gy. Kutsan and A. Erdöhelyi, Catal. Lett. 11 (1991) 149.

    Article  CAS  Google Scholar 

  15. A. Erdöhelyi, J. Cserényi and F. Solymosi, J. Catal. 141 (1993) 287.

    Article  Google Scholar 

  16. A. Erdöhelyi, J. Cserényi, E. Papp and F. Solymosi, Appl. Catal. A 108 (1994) 205.

    Article  Google Scholar 

  17. L. Basini and D. Sanfilippo, J. Catal. 157 (1995) 162.

    Article  CAS  Google Scholar 

  18. A.M. Efstathiou, A. Kladi, V.A. Tsipouriari and X.E. Verykios, J. Catal. 158 (1996) 64.

    Article  CAS  Google Scholar 

  19. M.C.J. Bradford and M.A. Vannice, Catal. Rev. Sci. Eng. 41 (1999) 1.

    Article  CAS  Google Scholar 

  20. Y.G. Chen and J. Ren, Catal. Lett. 29 (1994) 39.

    Article  CAS  Google Scholar 

  21. H.Y. Wang and C.T. Au, Appl. Catal. A 155 (1997) 239.

    Article  CAS  Google Scholar 

  22. G.J. Kim, D.S. Cho, H.H. Kim and H.J. Kim, Catal. Lett. 28 (1994) 41.

    Article  CAS  Google Scholar 

  23. J.Z. Luo, L.Z. Gao, Z.L. Yu and C.T. Au, Recommended for oral presentation in the 12th ICC to be held in Granada, Spain, 2000.

  24. Z.L. Zhang, X.E. Verykios, S. Macdonald and S. Affrossaman, J. Phys. Chem. 100 (1996) 744.

    Article  CAS  Google Scholar 

  25. V.A. Tsipouriari, Z. Zhang and X.E. Verykios, J. Catal. 179 (1998) 283.

    Article  CAS  Google Scholar 

  26. K. Tomishige, Y. Chen and K. Fujimoto, J. Catal. 181 (1999) 91.

    Article  CAS  Google Scholar 

  27. A.M. O'onnor, F.C. Meunier and J.R.H. Ross, in: Natural Gas Conversion V, Stud. Surf. Sci. Catal., Vol. 119, eds. A. Parmaliana et al. (Elsevier, Amsterdam) p. 819.

  28. V.C.H. Kroll, H.M. Swaan, S. Lacombe and C. Mirodatos, J. Catal. 164 (1997) 387.

    Article  Google Scholar 

  29. I.A. Fischer and A.T. Bell, J. Catal. 172 (1997) 222.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Gao, L., Ng, C. et al. Mechanistic studies of CO2/CH4 reforming over Ni–La2O2/5A. Catalysis Letters 62, 153–158 (1999). https://doi.org/10.1023/A:1019067526709

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019067526709

Navigation