Skip to main content
Log in

Methanol decomposition to synthesis gas over supported Pd catalysts prepared from synthetic anionic clays

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Supported Pd or Rh catalysts were prepared by the solid-phase crystallization method starting from hydrotalcite anionic clay minerals based on [Mg6Al2(OH)16CO 2−2 ]·4H2O as the precursors. The precursors were prepared by a coprecipitation method from the raw materials containing Pd2+ and various trivalent metal ions which can replace each site of Mg2+ and Al3+ in the hydrotalcite. Rh3+ was also used for preparing the catalyst as comparison. The precursors were then thermally decomposed and reduced to form supported Pd or Rh catalysts and used for the methanol decomposition to synthesis gas. Among the precursors tested, use of Mg–Cr hydrotalcite containing Pd2+ resulted in the formation of efficient Pd supported catalysts for the production of synthesis gas by selective decomposition of methanol at low temperature. Although Pd2+ cannot well replace the Mg2+ site in the hydrotalcite, the Pd supported catalyst (Pd/Mg–Cr) prepared by the solid-phase crystallization method formed highly dispersed Pd metal particles and showed much higher activity than that prepared by the conventional impregnation method. When the precursor was prepared under mild conditions, more fine particles of Pd metal were formed over the catalyst, resulting in high activity. It is likely that the high activity may be due to the highly dispersed and stable Pd metal particles assisted by the role of Cr as the co-catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.-H. Cheng and H.H. Kung, Methanol Production and Use (Dekker, New York, 1994) p. 1.

    Google Scholar 

  2. K. Mizuno, Hyoumen 19 (1981) 513.

    CAS  Google Scholar 

  3. T. Imai, Shokubai 28 (1986) 196.

    Google Scholar 

  4. W.H. Cheng, S. Akhter and H.H. Kung, J. Catal. 82 (1993) 341.

    Article  Google Scholar 

  5. K.M. Tawarah and R.S. Hansen, J. Catal. 87 (1984) 305.

    Article  CAS  Google Scholar 

  6. A. Perrad, J.-P. Joly and J.-E. German, Bull. Soc. Chim. Fr. 1 (1984) 208.

    Google Scholar 

  7. W.-H. Cheng, Appl. Catal. A 130 (1995) 13.

    Article  CAS  Google Scholar 

  8. S. Kasaoka and T. Shirakami, Nenryou-kyoukaishi 59 (1980) 40.

    CAS  Google Scholar 

  9. H. Niiyama, M. Tamai, S. Kim and E. Echigoya, Sekiyu-gakkaishi 24 (1981) 322.

    CAS  Google Scholar 

  10. K. Mizuno, Y. Iwasaki, T. Shu and M. Suzuki, Nenryou-kyoukaishi 60 (1981) 835.

    CAS  Google Scholar 

  11. T. Imai, H. Fujita, K. Iida and S. Yokoyama, Shokubai 27 (1985) 136.

    Google Scholar 

  12. S.R. Bare, J.A. Stroscio and W. Ho, Surf. Sci. 150 (1985) 299.

    Article  Google Scholar 

  13. Y. Matsumura, K. Kagawa, Y. Usami, M. Kawazoe, H. Sakurai and M. Haruta, J. Chem. Soc. Chem. Commun. (1997) 657.

  14. Y. Matsumura, M. Okumura, Y. Usami, K. Kagawa, H. Yamashita, M. Anpo and M. Haruta, Catal. Lett. 44 (1997) 189.

    Article  CAS  Google Scholar 

  15. T. Hayakawa, H. Harihara, A.G. Andersen, A.P.E. York, K. Suzuki, H. Yasuda and K. Takehira, Angew. Chem. Int. Ed. Engl. 35 (1996) 192.

    Article  CAS  Google Scholar 

  16. T. Hayakawa, H. Harihara, A.G. Andersen, K. Suzuki, H. Yasuda, T. Tsunoda, S. Hamakawa, A.P.E. York, Y.S. Yoon, M. Shimizu and K. Takehira, Appl. Catal. A 149 (1997) 391.

    Article  CAS  Google Scholar 

  17. R. Shiozaki, A.G. Andersen, T. Hayakawa, S. Hamakawa, K. Suzuki, M. Shimizu and K. Takehira, J. Chem. Soc. Faraday Trans. 93 (1997) 3235.

    Article  CAS  Google Scholar 

  18. S. Suzuki, T. Hayakawa, S. Hamakawa, K. Suzuki, T. Shishido and K. Takehira, Stud. Surf. Sci. Catal. 119 (1998) 783.

    Article  Google Scholar 

  19. Z. Gandao, B. Coq, L.C. de Menorval and D. Ticht, Appl. Catal. A 147 (1996) 395.

    Article  Google Scholar 

  20. F.M. Cabello, D. Ticht, B. Coq, A. Vaccari and N.T. Dung, J. Catal. 167 (1997) 142.

    Article  CAS  Google Scholar 

  21. F. Basile, L. Basini, G. Fornasari, M. Gazzano, F. Trifirò and A. Vaccari, J. Chem. Soc. Chem. Commun. (1996) 2435.

  22. F. Basile, L. Basini, M. D'Amore, G. Fornasari, A. Guarinoni, D. Matteuzzi, G. Del Piero, F. Trifirò and A. Vaccari, J. Catal. 173 (1998) 247.

    Article  CAS  Google Scholar 

  23. R.D. Shannon, Acta Crystallogr. A 32 (1976) 751.

    Article  Google Scholar 

  24. W.T. Richle, CHEMTECH (January 1986) 58.

  25. H. Baker et al., eds., Alloy Phase Diagramms, ASM Handbook, Vol. 3 (ASM International, 1992) pp. 2–156.

  26. T. Fukuhara, S. Sekiguchi, H. Muto and A. Igarashi, Kagaku Kogaku Ronbunshu 21 (1995) 1002.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shiozaki, R., Hayakawa, T., Liu, Yy. et al. Methanol decomposition to synthesis gas over supported Pd catalysts prepared from synthetic anionic clays. Catalysis Letters 58, 131–140 (1999). https://doi.org/10.1023/A:1019065530943

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019065530943

Navigation