Skip to main content
Log in

Advanced mathematical programming modeling to assess the benefits from international CO2 abatement cooperation

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The aim of this paper is to propose a method for coupling national energy models, to identify the dividends of international cooperation in atmospheric pollution abatement and efficient energy use. It indicates, also, how to solve the resulting large‐scale multinational model. It simulates finally a cooperation of four European countries for curbing their carbon dioxide (CO2) emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Bahn, Techniques de décomposition dans l'analyse des choix énerg étiques et environnementaux, Ph.D. thesis, University of Geneva, Geneva (1994).

    Google Scholar 

  2. O. Bahn, L. Barreto, B. Büeler and S. Kypreos, A multi-regional MARKAL-MACRO model to study an international market of CO2 emission permits, PSI Bericht Nr. 97–09, Paul Scherrer Institute, Villigen (1997).

    Google Scholar 

  3. O. Bahn, A. Haurie, S. Kypreos and J.-P. Vial, A decomposition approach to multiregional environmental planning: A numerical study, in: Operations Research and Environmental Management, eds. C. Carraro and A. Haurie (Kluwer, Dordrecht, 1996) pp. 119–132.

    Google Scholar 

  4. J.F. Benders, Partitioning procedures for solving mixed-variables programming problems, Numerische Mathematik 4 (1962) 238–252.

    Google Scholar 

  5. C. Berger, R. Dubois, A. Haurie, E. Lessard and R. Loulou, Assessing the dividends of power exchange between Quebec and New York State: A system analysis approach, International Journal of Energy Research 14 (1990) 253–273.

    Google Scholar 

  6. E.W. Cheney and A.A. Goldstein, Newton's method for convex programming and Tchebycheff approximation, Numerische Mathematik 1 (1959) 253–268.

    Google Scholar 

  7. G.B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, 1963).

    Google Scholar 

  8. G.B. Dantzig and P. Wolfe, Decomposition principle for linear programs, Operations Research 8 (1960) 101–111.

    Google Scholar 

  9. U. Fahl, E. Laege, W. Rueffler, P. Schaumann and A. Voss, Emissionsminderung von energiebedingten klimarelevanten Spurengasen in der Bundesrepublik Deutschland und Baden-Wuerttemberg, Research Report No. 21, Institute of Energy Economics and Rational Use of Energy, University of Stuttgart (1995).

  10. L.G. Fishbone and H. Abilock, MARKAL, a linear-programming model for energy systems analysis: Technical description of the BNL version, International Journal of Energy Research 5 (1981) 353–375.

    Google Scholar 

  11. J.-L. Goffin, A. Haurie and J.-P. Vial, Decomposition and nondifferentiable optimization with the projective algorithm, Management Science 38 (1992) 284–302.

    Google Scholar 

  12. J. Gondzio, O. du Merle, R. Sarkissian and J.-P. Vial, ACCPM - A library for convex optimization based on an analytic center cutting plane method, European Journal of Operational Research 94 (1996) 206–211.

    Google Scholar 

  13. J.K. Ho and E. Loute, Computational experience with advanced implementation of decomposition algorithms for linear programming, Mathematical Programming 27 (1983) 283–290.

    Google Scholar 

  14. International Panel on Climate Change (IPCC), Climate Change 1995 - The Science of Climate Change (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  15. International Panel on Climate Change (IPCC), Climate Change 1995 - Impacts, Adaptations and Mitigation of Climate Change (Cambridge University Press, Cambridge, 1996).

    Google Scholar 

  16. N. Karmarkar, A new polynomial time algorithm for linear programming, Combinatorica 4 (1984) 373–395.

    Google Scholar 

  17. J.E. Kelley, The cutting plane method for solving convex programs, Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.

    Google Scholar 

  18. S. Kypreos, CO2 emission control in Switzerland using mathematical programming, INFOR 30 (1992) 194–206.

    Google Scholar 

  19. C. Lemaréchal, Nonsmooth optimization and descent methods, RR–78-4, International Institute for Applied Systems Analysis, Laxenburg (1978).

    Google Scholar 

  20. E. Loehman and A. Whinston, An axiomatic approach to cost allocation for public investment, Public Finance Quaterly (October 1974) 315–328.

  21. R. Loulou and D. Lavigne, MARKAL model with elastic demands: Application to greenhouse gas emission control, in: Operations Research and Environmental Management, eds. C. Carraro and A. Haurie (Kluwer, Dordrecht, 1996) pp. 201–220.

    Google Scholar 

  22. A. Manne and C.O. Wenne, MARKAL-MACRO: A linked model for energy-economy analysis, BNL-47161, Brookhaven National Laboratory, Upton (1992).

    Google Scholar 

  23. A. Ruszczyński, A regularized decomposition method for minimizing a sum of polyhedral functions, Mathematical Programming 35 (1986) 309–333.

    Google Scholar 

  24. H. Scarf (with the collaboration of T. Hansen), The Computation of Economic Equilibria, Monograph, Vol. 24 (Cowles Foundation, Yale University Press, 1973).

  25. J.F. Shapiro, Mathematical Programming: Structures and Algorithms (Wiley, New York, 1979).

    Google Scholar 

  26. L.S. Shapley, A value for n-person games, in: Contributions to the Theory of Games, Vol. II, eds. H.W. Kuhn and A.W. Tucker, Annals of Mathematical Studies, Vol. 28 (Princeton University Press, Princeton, 1953) pp. 307–317.

    Google Scholar 

  27. United Nations, Kyoto Protocol to the United Nations Framework Convention on Climate Change (Climate Change Secretariat, Bonn, 1997).

    Google Scholar 

  28. United Nations, United Nations Framework Convention on Climate Change (UNEP, Geneva, 1992).

    Google Scholar 

  29. [29] VITO (Flemish Institute for Technological Research), MARKAL reference energy system, version 2: BBEC scenario, ENE.RV9306, VITO, Mol (1993).

  30. E. Van der Voort, The EFOM-12C energy supply model within the EC modelling system, OMEGA, International Journal of Management Science 10 (1982) 507–523.

    Google Scholar 

  31. P. Wolfe, A method of conjugate subgradients for minimizing nondifferentiable functions, in: Proceedings of the 12th Annual Alberton Conference on Circuit and System Theory (1974) pp. 8–15.

  32. D. Yang and S.A. Zenios, A scalable parallel interior point algorithm for stochastic linear programming and robust optimization, Report 95–07, Department of Public and Business Administration, University of Cyprus, Nicosia (1995).

    Google Scholar 

  33. J.R. Ybema and D.G. Gielen, Marginal cost of CO2 abatement for the Netherlands, in: Proceedings of the IEA-ETSAP/Annex VI 2nd Workshop, Vienna (1996).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahn, O., Haurie, A., Kypreos, S. et al. Advanced mathematical programming modeling to assess the benefits from international CO2 abatement cooperation. Environmental Modeling & Assessment 3, 107–115 (1998). https://doi.org/10.1023/A:1019062806256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019062806256

Navigation