Skip to main content
Log in

Oxidative dehydrogenation of n-butane: a comparative study of thermal and catalytic reaction using Fe–Zn mixed oxides

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The thermal cracking of n-butane was compared with both thermal and catalytic n-butane oxidative dehydrogenation reactions. It was found that thermal oxidative dehydrogenation of n-butane was highly selective to n-butenes (approximately 70%) in the conversion range of 11–20%. This reaction proceeded at lower temperature than the thermal cracking of n-butane without oxygen. These results suggest that both reactions have different initiation steps. In the thermal cracking of n-butane the reaction initiated by the C–C bond scission, whereas for the thermal oxidative dehydrogenation of n-butane the removal of the hydrogen atom by the molecular oxygen to form C4HO2 radicals was proposed as the main initiation step. On the other hand, butadiene was only obtained via a catalytic pathway, being strongly dependent on the reaction conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Blasco and J.M. López Nieto, Appl. Catal. A 157 (1997) 117.

    Article  CAS  Google Scholar 

  2. H.H. Kung, Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 171.

    Article  CAS  Google Scholar 

  3. M.A. Chaar, D. Patel, M.C. Kung and H.H. Kung, J. Catal. 105 (1987) 483.

    Article  CAS  Google Scholar 

  4. H.H. Kung and M.C. Kung, Appl. Catal. A 157 (1997) 105.

    Article  CAS  Google Scholar 

  5. B. Grzybowska, J. Sloczynski, R. Grabowski, K. Wcislo, A. Kozlowska, J. Stoch and J. Zielinski, J. Catal. 178 (1998) 687.

    Article  CAS  Google Scholar 

  6. P. Moriceau, B. Grzybowska, Y. Barbaux, G. Wrobel and G. Hecquet, Appl. Catal. A 168 (1998) 269.

    Article  CAS  Google Scholar 

  7. H. Shimada, T. Akazawa, N. Ikenaga and T. Suzuki, Appl. Catal. A 168 (1998) 243.

    Article  CAS  Google Scholar 

  8. B. Delmon, S.R.G. Carrazan, S. Koroli, M.A. Vicente Rodríguez and Z. Sobalik, Stud. Surf. Sci. Catal. 100 (1996) 1.

    Article  CAS  Google Scholar 

  9. Z.R. Ismagilov, S.N. Pak and V.K. Yermolaev, J. Catal. 136 (1992) 197.

    Article  CAS  Google Scholar 

  10. K.T. Nguyen and H.H. Kung, Ind. Eng. Chem. Res. 30 (1991) 352.

    Article  CAS  Google Scholar 

  11. I.M. Dahl, K. Grande, K.-J. Jens, E. Rytter and A. Slagtern, Appl. Catal. 77 (1991) 163.

    Article  CAS  Google Scholar 

  12. K.T. Nguyen and H.H. Kung, J. Catal. 122 (1990) 415.

    Article  CAS  Google Scholar 

  13. H. Armendariz, G. Aguilar-Rios, P. Salas, M.A. Valenzuela and I. Schifter, Appl. Catal. A 92 (1992) 29.

    Article  CAS  Google Scholar 

  14. J.E. Huheey, Inorganic Chemistry (Harper & Row, New York, 1972).

    Google Scholar 

  15. R.R. Baker, R.R. Baldwin, A.R. Fuller and R.W. Walker, J. Chem. Soc. Faraday Trans. I 71 (1975) 736.

    Google Scholar 

  16. R.R. Baker, R.R. Baldwin and R.W. Walker, J. Chem. Soc. Faraday Trans. I 71 (1975) 756.

    Google Scholar 

  17. R.R. Baker, R.R. Baldwin and R.W. Walker, Alkene Formation in Hydrocarbon Oxidation (Elsevier, Amsterdam, 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, J., Armendariz, H. & López-Salinas, E. Oxidative dehydrogenation of n-butane: a comparative study of thermal and catalytic reaction using Fe–Zn mixed oxides. Catalysis Letters 66, 19–24 (2000). https://doi.org/10.1023/A:1019062531620

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019062531620

Navigation