Skip to main content
Log in

Catalytic partial oxidation of methane to synthesis gas over γ-Al2O2-supported rhodium catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The partial oxidation of methane was studied over γ-Al2O3-supported catalysts for Rh loadings between 0.01 and 5.0 wt%. It was found that the activity and selectivities for loadings between 0.5 and 5.0 wt% are almost the same. As an example, detailed information is presented for the 1.0 wt% Rh/γ-Al2O3, which provides at 750°C (furnace temperature) an activity of 82% and selectivities of 96% to CO and 98% to H2, at a gas hourly space velocity (GHSV) of 720000 ml g−1 h−1. Its activity remained stable during our experiment which lasted 120 h. Possible explanations for this high stability are proposed based on TPR and XRD experiments. Pulse reactions with small pulses of CH4 and CH4/O2 (2/1) were performed over the reduced and unreduced Rh catalysts to probe the mechanistic aspects of the reaction. The partial oxidation of methane to syngas was found to be initiated by metallic rhodium sites, since the CO selectivity increased with increasing number of such sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Trimm, Catal. Rev. Sci. Eng. 16 (1977) 155.

    Google Scholar 

  2. J.R. Rostrup-Nielsen, Catal. Today 18 (1993) 305.

    Google Scholar 

  3. D.A. Hickman and L.D. Schmidt, J. Catal. 138 (1992) 267.

    Google Scholar 

  4. A.K. Bhattacharaya, J.A. Breach, S. Chand et al., Appl. Catal. A 80 (1992) L1.

    Google Scholar 

  5. D.A. Hickman, E.A. Haupfear and L.D. Schmidt, Catal. Lett. 17 (1993) 223.

    Google Scholar 

  6. D.A. Hickman and L.D. Schmidt, Science 259 (1993) 343.

    Google Scholar 

  7. P.M. Torniainen, X. Chu and L.D. Schmidt, J. Catal. 146 (1994) 1.

    Google Scholar 

  8. S.S. Bharadwaj and L.D. Schmidt, Fuel Process. Technol. 42 (1995) 109.

    Google Scholar 

  9. P.M. Witt and L.D. Schmidt, J. Catal. 163 (1996) 465.

    Google Scholar 

  10. K. Nakagawa, N. Ikenaga, T. Suzuki et al., Appl. Catal. A 169 (1998) 281.

    Google Scholar 

  11. M. Prettre, C. Eichner and M. Perrin, Trans. Faraday Soc. 43 (1946) 335.

    Google Scholar 

  12. D. Dissanayake, M.P. Rosynek, K.C.C. Kharas and L.H. Lunsford, J. Catal. 132 (1991) 117.

    Google Scholar 

  13. W.J.M. Vermeiren, E. Blomsma and P.A. Jacobs, Catal. Today 13 (1992) 427.

    Google Scholar 

  14. V.R. Choudhary, A.M. Rajput and B. Prabhakar, J. Catal. 139 (1993) 326.

    Google Scholar 

  15. Y. Lu, Y. Liu and S. Shen, J. Catal. 177 (1998) 386.

    Google Scholar 

  16. S. Tang, J. Lin and K.L. Tan, Catal. Lett. 51 (1998) 169.

    Google Scholar 

  17. R.S. Drago, K. Jurczyl, N. Kob, A. Bhattacharyya and J. Masin, J. Catal. 51 (1998) 177.

    Google Scholar 

  18. V.A. Tsipouriari, Z. Zhang and X.E. Verykios, J. Catal. 179 (1998) 283.

    Google Scholar 

  19. A.T. Ashcroft, A.K. Cheetham, J.S. Foord et al., Nature 344 (1990) 319.

    Google Scholar 

  20. R.H. Jones, A.T. Ashcroft, D. Waller et al., Catal. Lett. 8 (1991) 169.

    Google Scholar 

  21. A. Slagtern and U. Olsbye, Appl. Catal. A 110 (1994) 99.

    Google Scholar 

  22. V.R. Choudhary, B.S. Uphade and A.A. Belhekar, J. Catal. 163 (1996) 312.

    Google Scholar 

  23. R. Lago, G. Bini, M.A. Pena and J.L.G. Fierro, J. Catal. 167 (1997) 198.

    Google Scholar 

  24. O.V. Buyevskaya, D. Wolf and M. Baerns, Catal. Lett. 29 (1994) 249.

    Google Scholar 

  25. C.T. Au, Y.H. Hu and H.L. Wan, Catal. Lett. 27 (1994) 199.

    Google Scholar 

  26. E.P.J. Mallens, J.H.B.J. Hoebink and G.B. Marin, Catal. Lett. 33 (1995) 291.

    Google Scholar 

  27. Y.H. Hu and E. Ruckenstein, Catal. Lett. 34 (1995) 41.

    Google Scholar 

  28. Y.H. Hu and E. Ruckenstein, J. Catal. 158 (1996) 260.

    Google Scholar 

  29. C.T. Au, H.Y. Wang and H.L. Wan, J. Catal. 158 (1996) 343.

    Google Scholar 

  30. D.Z. Wang, O. Dewaele, A.M.D. Groote and G.F. Froment, J. Catal. 159 (1996) 418.

    Google Scholar 

  31. C.T. Au and H.Y. Wang, Catal. Lett. 41 (1996) 159.

    Google Scholar 

  32. E.P. Mallens, J.H.B.J. Hoebink and G.B. Marin, J. Catal. 167 (1997) 43.

    Google Scholar 

  33. C.T. Au and H.Y. Wang, J. Catal. 167 (1997) 337.

    Google Scholar 

  34. Y.H. Hu and E. Ruckenstein, J. Phys. Chem. A 102 (1998) 230.

    Google Scholar 

  35. Y.H. Hu and E. Ruckenstein, J. Phys. Chem. A 102 (1998) 10568.

    Google Scholar 

  36. E. Ruckenstein, in: Metal-Support Interactions in Catalysis, Sintering, and Redispersion, eds. S.A. Stevenson, J.A. Dumesic, R.T.K. Baker and E. Ruckenstein (Van Nostrand Reinhold, New York, 1987) p. 297.

    Google Scholar 

  37. D. Dissanayake, M.P. Rosynek and J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Ruckenstein, E. Catalytic partial oxidation of methane to synthesis gas over γ-Al2O2-supported rhodium catalysts. Catalysis Letters 59, 121–127 (1999). https://doi.org/10.1023/A:1019045210412

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019045210412

Navigation