Skip to main content
Log in

Ammonia synthesis over multi‐promoted iron catalysts obtained by high‐energy ball‐milling

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The feasibility of producing ammonia synthesis catalysts from high‐energy ball‐milling of a simple mixture of the constituent oxides has been investigated. The effect of ball‐milling the fused oxidic precursor of the industrial KM1 ammonia synthesis catalyst has also been studied. The results show that high‐energy ball‐milling offers some interesting possibilities for preparing novel catalytic materials. It is observed that ball‐milling of the powder oxides mixture leads to formation of solid solutions and the catalytic activity is significantly higher than that of the starting material. Furthermore, ball‐milling of fused oxidic KM1 precursor is seen to give rise to more homogeneous promoter distribution and slightly higher activity. The quite small activity increase observed in this case probably reflects the fact that the fusion process has already resulted in a close to optimal promoter distribution. The choice of atmosphere during ball‐milling is also seen to offer possibilities for regulating the phase composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schlögl, in: Catalytic Ammonia Synthesis — Fundamentals and Practice, ed. J.R. Jennings (Plenum, New York, 1991) p. 19.

    Google Scholar 

  2. P. Stoltze, in: Ammonia — Catalysis and Manufacture, ed. A. Nielsen (Springer, Berlin, 1995) p. 16.

    Google Scholar 

  3. A. Nielsen, An Investigation on Promoted Iron Catalysts for the Synthesis of Ammonia, 3rd Ed. (Jul. Gjellerup, 1968).

  4. B.S. Clausen, S. Mørup, H. Topsøe, R. Candia, E.J. Jensen, A. Baranski and A. Pattek, J. Phys. Colloq. 37 (1976) C6-245.

    Google Scholar 

  5. W.L. Johnson, Prog. Mater. Sci. 30 (1986) 81.

    Google Scholar 

  6. C.C. Koch, in: Materials Science and Technology, Vol. 15, eds. R.W. Cahn, P. Haasen and E.J. Kramer (VCH, Weinheim, 1991) p. 193.

    Google Scholar 

  7. J.Z. Jiang, C. Gente and R. Bormann, Mater. Sci. Eng. A 242 (1998) 268.

    Google Scholar 

  8. J.Z. Jiang, R. Lin, S. Mørup, K. Nielsen, F.W. Poulsen, F.J. Berry and R. Clasen, Phys. Rev. B 55 (1997) 11; J.Z. Jiang, S. Mørup and S. Linderoth, Mater. Sci. Forum 225–227 (1996) 489; J.Z. Jiang, R.K. Larsen, R. Lin, S. Mørup, I. Chorkendorff, K. Nielsen, K. Hansen and K. West, J. Solid State Chem. 138 (1998) 114.

    Google Scholar 

  9. L. Huang, G.J. Kramer, W. Wieldraaijer, D.S. Brands, E.K. Poels, H.L. Castricum and H. Bakker, Catal. Lett. 48 (1997) 55.

    Google Scholar 

  10. T. Rühle, D. Herein, N. Pfander, G. Weinberg, T. Braum and R. Schlögl, Oral presentation at XXIX Jahrestreffen deutscher Katalytiker, Friedrichroda, 20–22 March 1996.

  11. F.C. Jentoft, H. Schmelz and H. Knözinger, Appl. Catal. A 161 (1997) 167.

    Google Scholar 

  12. A. Trovarelli, F. Zamar, J. Llorca, C. de Leitenburg, G. Dolcetti and J.T. Kiss, J. Catal. 169 (1997) 490; A. Trovarelli, P. Matteazzi, G. Dolcetti, A. Lutman and F. Miani, Appl. Catal. A 95 (1993) L9; F. Zamar, A. Tovarelli, C. de Leitendam and G. Dolcetti, in: 11th Int. Congr. on Catalysis, Stud. Surf. Sci. Catal., Vol. 101B, eds. J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell (Elsevier, Amsterdam, 1996) p. 1283.

    Google Scholar 

  13. V.A. Zazhigalov, J. Haber, J. Stoch, L.V. Bogutskaya and I.V. Bacherikova, Appl. Catal. A 135 (1996) 155; V.A. Zazhigalov, J. Haber, J. Stoch, L.V. Bogutskaya and I.V. Bacherikova, in: 11th Int. Congr. on Catalysis, Stud. Surf. Sci. Catal., Vol. 101B, eds. J.W. Hightower, W.N. Delgass, E. Iglesia and A.T. Bell (Elsevier, Amsterdam, 1996) p. 1039.

    Google Scholar 

  14. M. Crocker, R.H.M. Herold, C.A. Emeis and M. Krijger, Catal. Lett. 15 (1992) 339.

    Google Scholar 

  15. S. Mori, W.C. Xu, T. Ishidzuki, N. Ogasawara, J. Imai and K. Kobayashi, Appl. Catal. A 137 (1996) 255.

    Google Scholar 

  16. L.T. Weng, N. Spitaels, B. Yasse, J. Ladrire and P. Ruiz, J. Catal. 132 (1991) 319.

    Google Scholar 

  17. J.Z. Jiang, Y.X. Zhou, S. Mørup and C.B. Koch, Nanostruct. Mater. 7 (1996) 401; S. Linderoth, J.Z. Jiang and S. Mørup, Mater. Sci. Forum 235–238 (1997) 205.

    Google Scholar 

  18. S. Mørup, B.S. Clausen and P.H. Christensen, J. Magn. Magn. Mater. 68 (1987) 160.

    Google Scholar 

  19. S.R. Tennison, in: Catalytic Ammonia Synthesis — Fundamentals and Practice, ed. J.R. Jennings (Plenum, New York, 1991) p. 305 (see figure 9.1(b)).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobsen, C.J., Jiang, J., Mørup, S. et al. Ammonia synthesis over multi‐promoted iron catalysts obtained by high‐energy ball‐milling. Catalysis Letters 61, 115–120 (1999). https://doi.org/10.1023/A:1019041426284

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019041426284

Navigation